Introducing the MeVCube concept: a CubeSat for MeV observations

Giulio Lucchetta Monitoring the high-energy sky with small satellite Brno, 07/09/2022

Science case: study of the emission mechanisms in AGNs and blazars, GRBs and search of electromagnetic counterparts of GW events, nuclear astrophysics, and more...

Compton telescopes: past and future

scintillation cameras

- ✓ Performance of the full telescope evaluated through simulations (Geant4 based simulation toolkit *MegaLib*: Zoglauer et al., New Astron. Rev., 50, 2006
- ✓ Requirements for single CZT detectors validated by laboratory measurements

/	Compact Compton telescope on a CubeSat: 4U for the scientific payload, 2U
	for the satellite bus (6U total)

- ✓ 128 pixelated Cadmium Zinc Telluride (CdZnTe or CZT) detectors, on two layers (+ ACD to veto charged particle background)
- \checkmark High atomic number (48,30,52) and density (5.8 g/cm^3): good stopping power
- ✓ Good spectral and imaging performance

Parameter	Design value		
CubeSat model	4 U scientific payload,		
	6 U complete satellite		
Orbit	Low Earth Orbit (LEO),		
	~ 550 km altitude, $\leq 5^{\circ}$ inclination		
Number of CdZnTe detectors	128		
CdZnTe detector size	$2.0 \text{ cm} \times 2.0 \text{ cm} \times 1.5 \text{ cm}$		
Pixel pitch	2.45 mm		
Pixel size	$2.25 \text{ mm} \times 2.25 \text{ mm}$		
Depth resolution (FWHM)	$\sim 1.8 \text{ mm}$		
Energy resolution (FWHM)	$\sim 6.5\%$ at 200 keV,		
	$\sim 2.8\%$ at 662 keV,		
	$ \lesssim 2.0\%$ at $> 1~{ m MeV}$		
Read-out electronics	VATA450.3		
Total power consumption	$< 5 \mathrm{W}$		

- Minimum flux that is likely to result in a statistically significant source detection
- > Calculated based on instrument performance for angular resolution, effective area, observation time and background rate
- \blacktriangleright MeVCube sensitivity evaluated for a 3 σ detection of a source at high Galactic latitude
- Background model adapted from Cumani et al., *Exper.Astron.*, 47 (2019)
 - COMPTEL data from Schönfelder, New Astron. Rev., 48 (2004) INTEGRAL-SPI from Roques et al., A & A, 411 (2003) INTEGRAL-IBIS from Ubertini et al., A & A, 411 (2003)

- Performance of pixelated CdZnTe detector tested with different radioactive sources.
- Anode read-out: 64-channel VATA450.3 ASIC by *Ideas*. Meets our requirements in terms of dynamic range, noise, and power consumptions (0.25mW/ch)
- Preliminary cathode read-out: Amptek A250F charge sensitive pre-amplifier

Spectral performance: depth-of-interaction correction

- Energy spectra for the 662keV line of Cs-137: left tails due to incomplete charge collection and electron trapping
- Signals from the cathode, taken in coincidence with those of the anode electrodes, provide a correction for these effects (depth-ofinteraction technique).
- Improvement of the energy resolution

Spectral performance: depth-of-interaction correction

- Energy spectra for the 662keV line of Cs-137: left tails due to incomplete charge collection and electron trapping
- Signals from the cathode, taken in coincidence with those of the anode electrodes, provide a correction for these effects (depth-ofinteraction technique).
- Improvement of the energy resolution
- Removal of near-anode events further improves the energy resolution, but limits the active detector volume to ~80%

Energy dependence: energy resolution is on average ~6.5% at 200 keV decreasing to <2% at energies above 1 MeV Energy resolution < 3% FWHM at 662 keV (Cs-137 line) for majority of pixels

- > Resolution on the detector plane (x-y axes) dictated by the pixel dimensions
- > Interaction depth (z axis) measured from the ratio between the cathode and the anode signals
- > Tested with Cs radioactive source + copper collimator. Geant4 simulation to define the "geometrical illumination spot".
- Depth resolution below 2 mm (FWHM)

Evaluation of the viability and performance of a Compton telescope based on the CubeSat standard:

- ✓ Angular resolution of 1.5°, field-of-view around 2sr, sensitivity comparable to the one achieved by the last generation of large satellites like COMPTEL and INTEGRAL
- The combination of wide field-of-view, reasonable angular resolution and comparatively low costs make MeVCube a powerful instrument for observations of transients.
- Future work might include dedicated studies on polarization measurement capabilities and sensitivity to nuclear lines

> Experimental measurements:

- ✓ Evaluation of the read-out electronics and performance of custom design CdZnTe detector
- ✓ Energy and angular resolution meets the requirements for the mission

Successful proposal to DFG (DESY; David Berge, Markus Ackermann) and NSFC (IHEP; Peng Wen-Xi, Wan-Chang Zhang):

✓ Development of a prototype Compton camera compatible with the 1U standard

Backup slides

- EGB: diffuse and isotropic photon background due to unresolved sources
- Albedo photons: gamma-ray background produced by the cosmic rays interactions with the upper layers of Earth's atmosphere
- Galactic emission
- Charged particle background: charged cosmic-rays hitting the detector; vetoed by an ACD
- > Material Activation

Property	$\mathrm{Cd}_{0.9}\mathrm{Zn}_{0.1}\mathrm{Te}$	CdTe	\mathbf{Si}	\mathbf{Ge}
Atomic number, Z	$48, \ 30, \ 52$	48, 52	14	32
Density, $\rho [g/cm^3]$	5.78	5.85	2.33	5.33
Band gap, E_g [eV]	1.57	1.44	1.12	0.67
Pair creation energy, E_{pair} [eV]	4.64	4.43	3.62	2.96
Resistivity, $\rho \left[\Omega \mathrm{cm}\right]$	$3\cdot 10^{10}$	10^{9}	$< 10^{4}$	50
Fano factor	0.09	0.11	0.12	0.08
Radiation length, X_0 [cm]	1.44	1.44	9.37	2.30
Electron mobility, $\mu_e [\mathrm{cm}^2/\mathrm{Vs}]$	1000	1100	1400	3900
Hole mobility, $\mu_h [\mathrm{cm}^2/\mathrm{Vs}]$	80 - 120	100	480	1900
Electron lifetime, τ_e [s]	$3 \cdot 10^{-6}$	$3 \cdot 10^{-6}$	$> 10^{-3}$	$> 10^{-3}$
Hole lifetime, τ_h [s]	10^{-6}	$2\cdot 10^{-6}$	10^{-3}	$2\cdot 10^{-3}$
$\mu_e \cdot \tau_e \; [\mathrm{cm}^2/\mathrm{V}]$	$10^{-3} - 10^{-2}$	10^{-3}	> 1	> 1
$\mu_h \cdot \tau_h \; [\mathrm{cm}^2/\mathrm{V}]$	$10^{-5} - 10^{-4}$	10^{-4}	~ 1	> 1

Trapping in thick CdZnTe detectors:

$$q = q_0 e^{[r(\bar{t}) - r(t_0)]/\lambda}$$

 $\lambda = \mu \tau E$

The effect of the steering grid is evaluated from the improvement in the detection rate of photo-peak events

N_{floating}