

GRB localization by timing in LEO

Masanori Ohno (Hiroshima University)

Towards A Network of GRB Detecting Nanosatellites

Localization of GRBs : a key for the future MM astronomy

- **EM** counterpart from NS-NS merger event GW170817/GRB170817A
- **Gigantic campaign of follow**up observation in many EM wavelengths successfully carried out
 - short GRB association is still unbigious

Large FoV (all-sky)

good localization (tens arcmin : FoV of future opt. telescopes ~arcsec : unique candidate constraint)

What do we need ?

Imaging-based localization

- *T*<*10* sec
- Simple localization by imaging (direct image or mask/slit patterns)
- Excellent positional accuracy (arcsec-arcmin), but a limited field of view (<~lstr)

Lobster-eye optics : imaging+large FoV

広島大学

Future missions for realizing the good (arcmin) imaging localization with larger FoV are proposing

High-Z Gamma-ray bursts for UNraveling the Dark Ages

(HiZ-GUNDAM) : Japan

Energy band (keV)	0.5 – 4 keV	
Telescope type:	Lobster Eye Optics	
Optics aperture	240 x 320 mm ²	
Optics configuration	6 x 8	
Size of Lobster Eye optics	40 x 40 mm ²	
Focal length	300 mm	
Focal plane shape	spherical	
Focal plane detectors	CMOS array	
Size of Focal detector	120 x 160 mm ²	
Number of CMOS	24 (4 CMOS x 6 units)	
Pixel size	20 – 50 μm	
Pixel Number	6000 x 8000 for 20 μm	
	-2400-x-3200-for-50-μm-	
Field of View	~ 0.2 str X6=1.2 str	
Angular accuracy	~ 60 arcsec	→

Similar concept is proposed by ESA : Transient High-Energy Sky and Early Universe Surveyor (Theseus) Expect to improve the FoV of imaging localization, but still not cover the "all-sky" 13th Sep. 2018

Detector-sensitivity-based localization

- Comparison of detected counts and the modeling for detectors with various orientations
- Nice FoV (almost all-sky), and moderate localization (several degs)
- Systematic uncertainty (modeling of background, detector response ..etc.) is a limiting factor

Timing-based localization

- "Triangulation" by several long-distant satellites in inter-planetally space
- Since 1976 and ongoing
- Long baseline gives a good localization (arcmin~deg) but difficult to synchronize the timing between different satellites.
- Very long data acquisition latency (>days)

timing-based localization + Fleet of nanosatellite in LEO

<u>timing-based localization</u> <u>with high timing</u> <u>synchronization</u> accuracy

$$d heta = c\sigma(\delta T)/D\sin heta$$
 Hurley+13

GPS <100 us sync. accuracy (Pal+18) → arcmin Localization accuracy

- all-sky coverage

(no earth shadow)

- large satellite number gives a better localization accuracy
 - good to think about data sharing for each smallsat project
- better latency than IPN

13th Sep. 2018

Towards A Network of GRB Detecting Nanosatellites

$$\sigma_{Pos} = \sigma_{CCF} \times c / \langle B \rangle / (N - 1 - 2)^{1/2}$$

Taken from F. Fiore's slide

```
100 satellites collaboration→ Arcsec localization !?
```


timing-based localization + Fleet of nanosatellite in LEO

<u>timing-based localization</u> <u>with high timing</u> <u>synchronization</u> accuracy

 $d\theta = c\sigma(\delta T)/D\sin\theta$ Hurley+13

Can we really realize such a good localization even if we take into account the realistic photon statistics and detector response for the nanosatellite ?

- all-sky coverage
 - (no earth shadow)
- large satellite number gives a better localization accuracy
 - good to think about data sharing for each smallsat project
- better latency than IPN

13th Sep. 2018

$$\sigma_{Pos} = \sigma_{CCF} \times c / \langle B \rangle / (N - 1 - 2)^{1/2}$$

Taken from F. Fiore's slide

100 satellites collaboration→ Arcsec localization !?

Timing-based localization w/ nanosats : feasibility ?

150 mm

5 mm

広島大学

Assumed Detector design:

4 large-thin plates of CsI scintillator on 3U Cubesat platform

A simple single cubesat design realizes a comparable effective area to Fermi-GBM (~300cm² at good incident angles) with an energy range of 10 to 1000 keV

MPP

Localization feasibility

Localization !

Example for a bright (GRB*** fluence:** erg cm-2,T90=**s) and good-visibility (detected by 9 satellites) case

Systematic analysis for Fermi-GBM short GRB

広島大学 Localization accuracy of this concept is examined for all short GRBs listed in Fermi 3rd GRB Catalog (Bhat+16 T₉₀<2s: 326 samples)

- High localization accuracy for good photon statistics (brighter/longer)
- Larger number of satellite gives a better localization
- 5-10 arcmin accuracy for good conditions

Summary

- X-ray/Gamma-ray follow-up of GW counterpart is important for revealing the nature of their sources
- Timing-based localization is a good candidate to realize a arcmin localization with all-sky coverage
- A first stage of the feasibility study shows a nice outlook for this concept
- Increasing the participating satellite would improve the localization accuracy
- Collaboration (data sharing ..etc.) of small satellite missions could be a future direction of GRB localizations

Let's enjoy sharing mission information and discussions !

Event rate and localization

広島大学

Sat. num.	Visibility prob.	Number ratio of Fermi sGRB for each localization accuracy		
		loc. within <10'	Loc. within <15'	Loc. within <20'
9	1.8%	27%	30%	37%
8	7.6%	26%	29%	33%
7	16%	5%	14%	19%
6	26%	2%	8%	13%
5	25%	1%	3%	8%
4	15%	1%	1%	1%

- ✓ ~12 % of Fermi-GBM sGRB: <20' localization accuracy
- ✓ Fermi GBM sGRB rate: 336 sGRBs/6 years ~ 60 sGRBs/year
- ~I0 sGRBs/year for <20' localization accuracy with a timinglocalization concept ! (0.5-1° for GRB170817A.. really??)
- Many things should be considered, observation efficiency, systematic uncertainties... etc. etc.