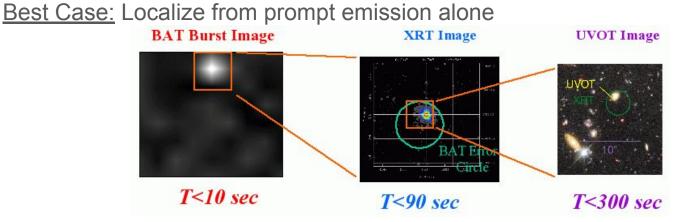
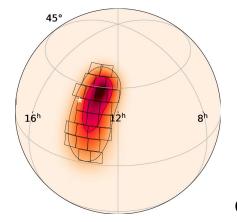
Fantastic Beasts and Where to Find Them

Aaron Tohuvavohu (University of Toronto)

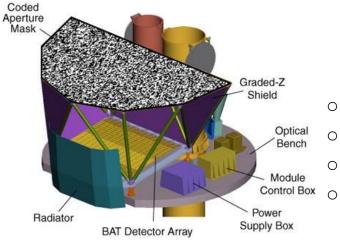

And the BAT-GUANO and Treasure Map teams

The 3 most important things for GRBs


- 1. Location
- 2. Location
- 3. Low-latency Location

Need a localization small enough for multi-wavelength characterization (<a few arcmin)

Two approaches:

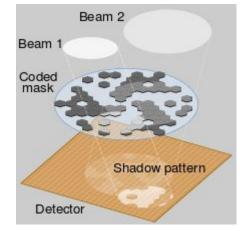


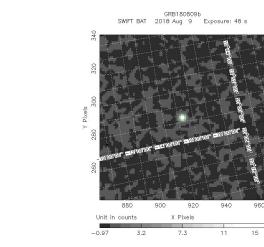
Most missions here: Expect wide-field off-band searches of large localization regions

Credit: Leo Singer, probably

Swift Burst Alert Telescope

(shadowgrams)


• Hard X-rays (15-350 keV)


Correlation and

FFT w/ mask

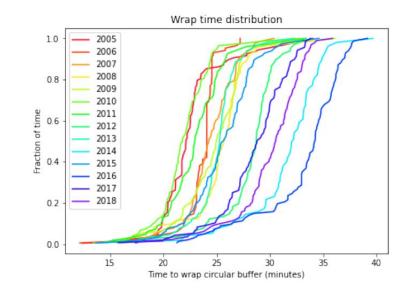
pattern

- 1/6 of the whole sky (~2 sr.) FoV
- Localizes ~100 GRB/yr onboard
- Prompt Arc-minute localization

		1		SP	a na sere	2.1	14.12	12.0		121	944 (14.16	N.S.	<u> 1</u>			51 F
Det Y	160	8	1	677	100	Ğ		38 1	1200	2	153	21215	SZ#	1	12.30	er v	W.
	140	HERE				ت نگ	HAR	114	MER.	ii.	1 14	Stip	153	100		18	125
				Ling 1	ALCO.		054	13	a sector	307	1.4	2024	347	2.6	200	det	2.5
	120	<u>нь</u> 5			4.2	4	有望		#C8	133	5			SAC.	121	濃田変	149
		2.10		¥ 🖸	1.1	料 合	10		10		12		(1 1	6 .%		Mar	
	100		Ħ	8	新活		D 3	0.0	145	2.	173	1	24.75	200	Ø 🗤	150	244.
		124	5.8	開建			MUR	1 K	8548		195 W	10	28	HANG.		51. s	3-20
	80	20	3 . A	472¥		動差				30.0		÷.		清洁	代語		
		100	10	20	17.	1.4	133	1. A.	464	"我们的	172	20		<u>ب :</u> ۱			
	60	SPT-	1	144	N.T.H	1.15		194 g		DE CIN		KAR	133	11.12	and the		
		SS.	15	開設	.с.,	5 C.	63 7	100	•	207		볛늰믭	123	SM	品語		
	40	100	5.40	Where a	N.M	21.77		12.5	12.03		122	12.5	(hộn)	19	25.8	8	
	20	1.96	D.A.	16	100			101	1CC	$2 ^{1}$		4	144	产于 2			
		122		. 62.2	West	in the		14	5.40	BH	1.1	$\mathbf{a}\mathbf{k}$	(1) 第		25		
	0	8 6 4		237	1452		der.		5.30		i ka 🛛	H-M	1.5	1227	1.	1	
	-	ò		50)		100)		150		2	00		25	50	
		Det Y															

Intrinsic capability of BAT

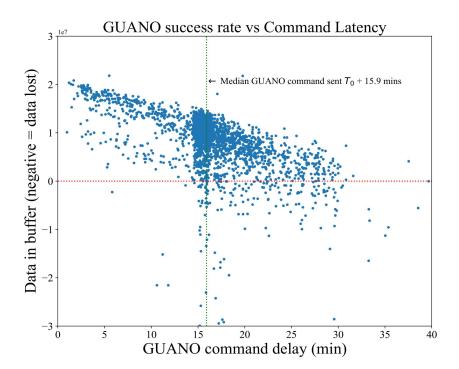
• With event data (each count tagged with time, photon energy, detector) can perform shadowgram, or other sensitive GRB searches


- Simulations show GRB 170817-like burst recoverable out to ~100 Mpc, almost 2x as far as any other instrument
- Only BAT can provide prompt arcmin localization for pointed follow-up at very early times, window to crucial physics
- BAT localization alone provides unique host galaxy ID in local universe

beyond ~60-70 Mpc!!!

25-100 keV simulated BAT lightcurve of GRB 170817 100% coded: 23 σ onboard trigger 400 75% coded: 18 o onboard trigger 25% coded: No onboard trigge 300 Counts per 128 ms 200 100 -100-200 Time - TO (s) 1056 105 10^{54} - 10 MeV) (erg) 1053 1052 1051 (1 keV 1050 Eiso 1049 1048 Long GRBs Short GRBs 1047 GRB 170817A 1046 2 4 6 8 Redshift (z) Undetectable for Fermi/INTEGRAL

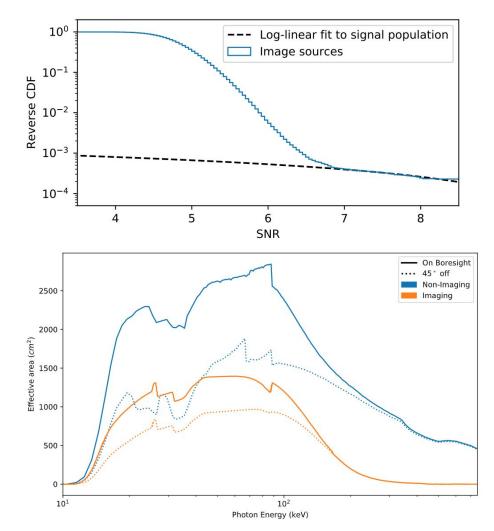
The Problem: Required Data Don't Make it to the Ground


- Swift mission design was for prompt (~seconds) ID and location of bursts
 - No requirement for non real-time analysis
- BAT effective area very large→ High Data Volume
- Antenna is bandwidth limited and onboard recorders are insufficient
- Result: For ~15 years BAT has relied on onboard real-time analyses to find GRBs
 - No targeted searches
 - No way to assess completeness/selection effects of onboard trigger algorithms
- Data we need are saved to an onboard ring buffer. If we can get to it in time, and get it to the ground, great science is possible!

"Fast response" commanding was ~2-4 hours!!!!!

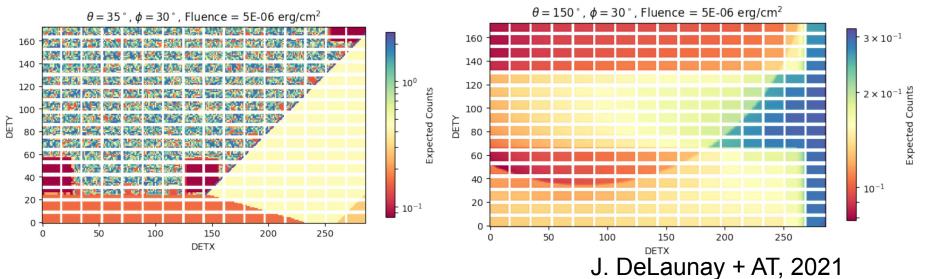
Gamma-ray Urgent Archiver for Novel Opportunities (GUANO):

Swift/BAT dumps on demand to enable sensitive sub-threshold GRB searches (AT, Kennea, DeLaunay, et al. 2020: 2005.01751)

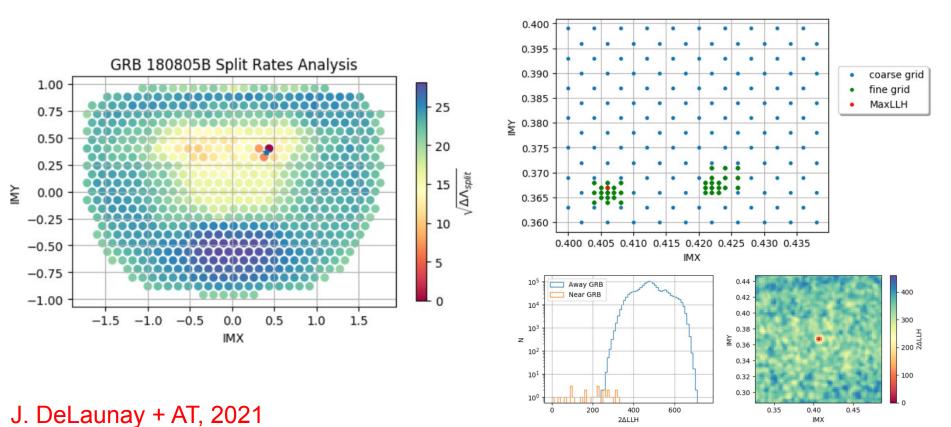


- Autonomously commanding spacecraft in extremely low latency to save temporally coincident event level data. ~5x/day
- First ever autonomous on-demand commanding of a space telescope for scientific purposes
- Commanding infrastructure also now used for very low-latency ToO repoint with narrow-field *Swift* instruments
 - On target to FRBs in O(10) minutes

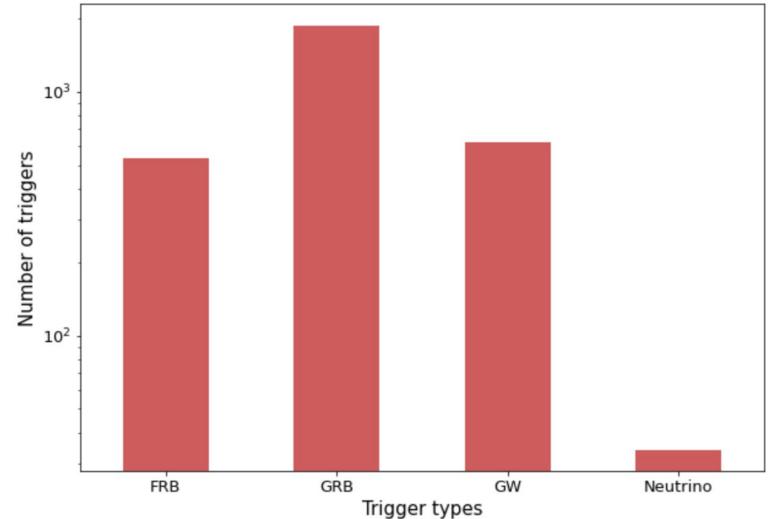
Now can do imaging, but...


- Large Image Noise population \rightarrow
- Rejection of uncoded counts on detector, which contain information
- Neglects energy information associated with each count
- Pays a mask-weighting A_{eff} efficiency factor
- Lower A_{eff} at higher energies due to mask transmission→ Lower sensitivity to short hard GRBs

NITRATES (Non-Imaging Transient Reconstruction And TEmporal Search):

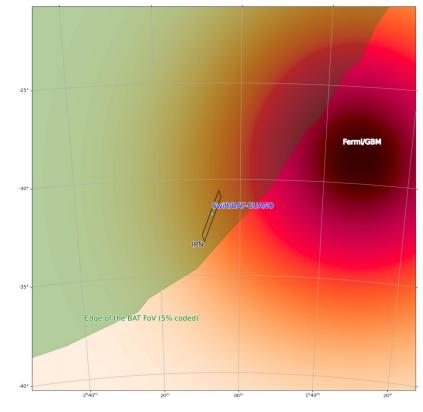

A new maximum likelihood Analysis Framework for BAT data

- Using the GUANO data, and bursts with known positions and spectra, we calibrate the BAT out-of-FoV response for the first time.
- GRBs are fully forward modelled through the instrument response, and resultant shadowgrams are produced
- These data models are compared to the observed data with a likelihood test
- 3-5 x more sensitive than imaging



NITRATES:

- The spatial parameter space to search is massive: FOV ~7000 deg² and PSF ~20 arcmin.
- Response varies very rapidly across the FoV. Can't possible search every location in low-latency.
- Need spatial seeding and intelligent stage-refined localization tests.
- Even with seeding ~500 CPU hours required.



GUANO searches as of 2022-05-15

External GRB triggered search results:

- Since Feb 2020: Triggering on GRBs detected by Fermi, INTEGRAL, CALET, GECAM, <u>YOUR MISSION HERE</u>
- These GRBs have either large (~100-1000 deg²) or no localizations
- GUANO has recovered arcminute localizations for 33 GRBs to date (~1/month).
 - > >15% of all arcmin localized GRBs.
- Higher short GRB recovery fraction
 - 25% vs 10% for BAT onboard
- Localizations distributed to community for follow-up in O(hours) via GCN
 - 22 of 33 got prompt follow-up
 - 14 afterglows discovered

Many localizations unrecoverable with conventional imaging

Search Sensitivity

Using this method and GBM data the flux and light curve shape, computed detection horizon for a GRB 170817A-like burst via injections

Max distance for 90% recoverability

- At FoV center ~ 115 Mpc
- 45deg off center ~ 90 Mpc

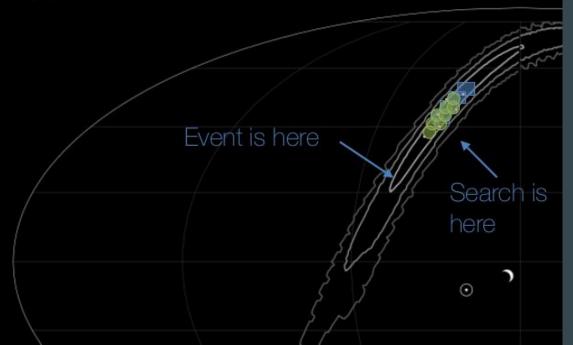
S200114f

- GW alert S200114f had >99% of its localization probability inside BAT's FoV
- Found upper limit flux for event by averaging position dependent sensitivity over skymap
- Assuming a power-law index of -1.32 found 14-195 keV flux sensitivities of
 - \circ 2.1 x 10⁻⁷ erg cm⁻² for 0.256s timescale
 - \circ 8.1 x 10⁻⁸ erg cm⁻² for 1.024s timescale

For Reference

- BAT onboard detection to ~ 65 Mpc at center of FoV
- GBM onboard detection to ~ 50 Mpc
- GBM targeted search ground analysis to < 70 Mpc

The Future of Treasure Map with GRBs?

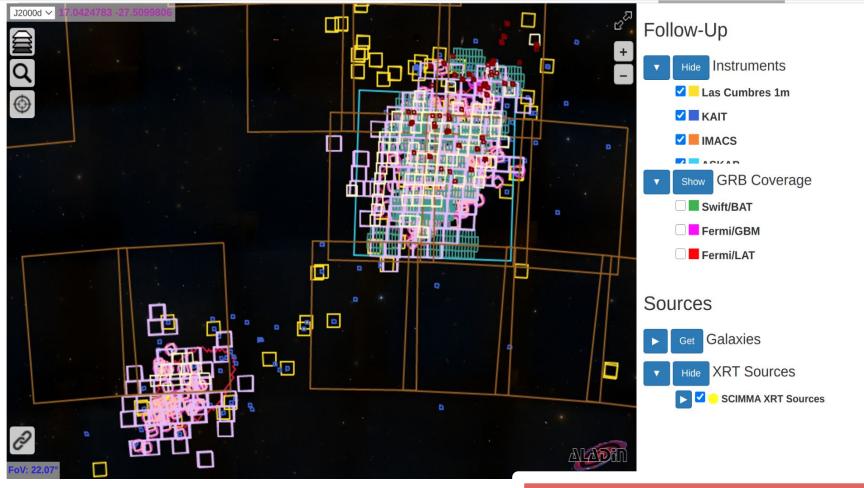


TREASURE MAP treasuremap.space

How to Avoid Unnecessary Overlap in EM Searches?

Typical Scenario:

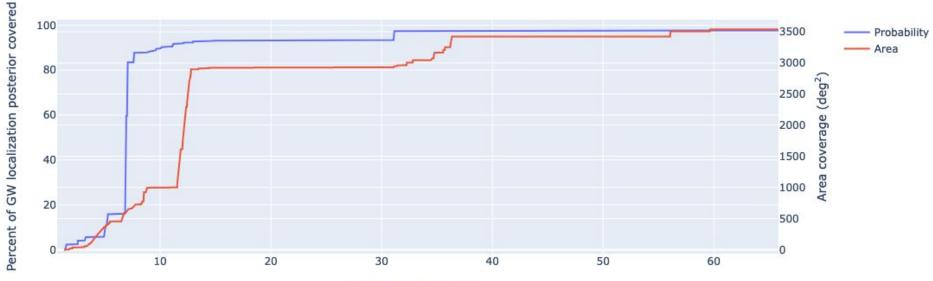
Everyone observes the highest probability region. Early (or entire) kilonova is missed 🛞


How to Avoid Unnecessary Overlap in EM Searches?

Desired Scenario:

Resources are put to good use to cover more of the probability region.

Early (or entire) kilonova is found! 🙂



GW Treasure Map (Wyatt, AT, et al. 2020): http://treasuremap.space

>4000 search exposures>20 instruments spanning radio → gamma

Hours since GW T0

Other coming/planned features

- Serve candidate counterpart information in map **DONE**
- Auto ingest TESS (+ other wide-field stare) coverage prototype working
- Serve Nu/gamma/GW convolved localization maps done for one event
- Serve suggested tiling and pointing plans to users prototype working
- Support IVOA scheduling/visibility query API format (obsLocTAP)
- TOM Toolkit plugin Support