

Measuring Gamma-ray Burst Polarisation with the *Daksha* mission

Sujay Mate On behalf of *Daksha* team

GRB Nanosat monthly - April 4, 2023

https://www.dakshasat.in

Daksha: Mission profile and design

- Two satellites on the opposite side of the positions in a low earth orbit (~600 km).
- Onboard real-time transient detection and localisation capability.

Parameter	Value			
Energy coverage	1 - 1000 keV			
Median effective area	1300 cm ² single, 1700 cm ² combined			
Field of View*	12.6 sr			
Localisation	~1° - 10° onboard ~5° ground			
Time resolution	1 µs			
Sensitivity**	4 x 10 ⁻⁸ erg/cm ² /s			

Figure: G. Waratkar (IIT Bombay)

Bhalerao et al 2022 (arXiv:2211.12055)

Two satellites combined.

Single satellite 1s transient, 5σ detection, 20 - 200 keV.

Daksha: Mission profile and design

• Two satellites on the opposite side of the positions in a low earth orbit (~600 km).

Onboard real-time transient detection and

Table 1. Comparison of key parameters of GRB missions.

Mission Energy range		Effective area	FoV		Range	Volume	Sensitivity (1-s, 5σ)		Reference
name	(keV)	(cm^2)	Sky fraction	(sr)	Mpc	${ m Mpc}^3$	${\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1}$	$\rm ph\ cm^{-2}\ s^{-1}$	
Daksha (single)	20-200	1300	0.7	8.8	76	1.27×10^{6}	4×10^{-8}	0.6	This work
Daksha (two)	20-200	1700	1	12.6	76	1.81×10^{6}	4×10^{-8}	0.6	This work
Swift-BAT	15-150	1400	0.11	1.4	67	0.14×10^{6}	3×10^{-8}	0.5	(a)
Fermi-GBM	50-300	420	0.7	8.8	49	0.35×10^{6}	20×10^{-8}	0.5	(b)
GECAM-B	6-5000	480	0.7	8.8	65	0.81×10^{6}	9×10^{-8}	_	(c)
SVOM/ECLAIRs	4-150	400	0.16	2	70	0.23×10^{6}	4×10^{-8}	0.8	(d)
THESEUS/XGIS	2-30	500	0.16	2	45	0.06×10^{6}	1.7×10^{-8}	10000	(e)
THESEUS/XGIS	30-150	500	0.16	2	58	0.12×10^{6}	5×10^{-8}		(e)
THESEUS/XGIS	150-1000	1000	0.5	6.2	20	0.02×10^{6}	45×10^{-8}		(e)

Sensitivity**	$4 \times 10^{-8} \text{ erg/cm}^2/\text{s}$

** Single satellite 1s transient, 5 σ detection, 20 – 200 keV.

1 keV

Figure: G. Waratkar (IIT Bombay)

Bhalerao et al 2022 (arXiv:2211.12055)

S Mate, GRB nanosat monthly

Daksha mission: Science

- Primary science:
 - Detect and localise 1 20 BNS mergers and ~500 classical GRBs.
 - Broadband spectroscopy of high-energy transients.
 - Hard X-ray polarimetry of bright transients.

- Secondary science:
 - Magnetar giant flares
 - Compton imaging of high-energy sky
 - Terrestrial Gamma-ray Flashes
 - Solar flares

GRB polarimetry: Science case

- Timing and spectroscopic studies of prompt emission are not enough to understand GRB the jet physics completely.
- Polarisation measurements can answer some of the open questions about the GRB jet
 - Composition and dynamics of the jet
 - Energy dissipation and emission mechanism
 - Magnetic field orientation and geometric structure

Toma et. al. 2013, Gill et. al. 2021, Tyler et. al. 2020 Polarization degree (PD) % Μ 0 $\Gamma^{-1} \ll \theta$ $\Gamma^{-1} \simeq \Theta$ **Γ**⁻¹ ≫θ D $\Theta_{v} < \Theta_{i} \quad \Theta_{v} \approx \Theta_{i} \quad \Theta_{v} > \Theta_{i} \quad \Theta_{v} < \Theta_{i} \quad \Theta_{v} \approx \Theta_{i} \quad \Theta_{v} > \Theta_{i} \quad \Theta_{v} < \Theta_{i} \quad \Theta_{v} \approx \Theta_{i} \quad \Theta_{v} > \Theta_{v} = \Theta_{v$ Ε S 40-50 10-15 <30 40-60 <20 12-20 SO ~40 <10 >50 SR 0 ~30 0 0 <20 10-40 0 <10 10-40 CD 0 40-50 0 0 40-70 20-30 0 ~40 50-90 PH 4-20 5-15 ~20 0 0 0 ~14

SO: Synchrotron Ordered; SR: Synchrotron Random CD: Compton Drag; PH: Photospheric

Table credits: S. Bala (IIT Bombay), D. Saraogi (IIT Bombay)

Recent GRB polarimeters

Onboard Chinese space station 14 GRBs in one year

POLAR

0320A	-		- 74	-		Kole et	al 2020
12104	-			- 78	47.		
2074							
206A -		<u></u>					
1270	-						
1114A		2					
101B		-					
101A							
229A -							
218B							
218A							
217C -							
203A				_			
1999.993	111111111	11					

A		NAL .	R.A.
	10-10-10-10-10-10-10-10-10-10-10-10-10-1		
		T	

GRB Name	Ncompt	Bayes Factor	PF (%) ^a	CZTI PA (°) b	sky PA (°)
GRB 160325A	764	1.72	< 45.02	-	-
GRB 160623A	1714	1.02	< 56.51	-	-
GRB 160703A	433	0.76	< 62.64	-	-
GRB 160802A	1511	0.69	< 51.89	-	-
GRB 160821A	2851	0.87	< 33.87	-	-
GRB 170527A	1638	0.79	< 36.46	-	-
GRB 171010A	3797	0.98	< 30.02	-	-
GRB 171227A	1249	0.84	< 55.62	-	-
GRB 180103A	4164	8.52	71.43 ± 26.84	34.67 ± 7.00	122.13
GRB 180120A	705	3.95	62.37 ± 29.79	-3.65 ± 26.00	61.21
GRB 180427A	986	9.25	60.01 ± 22.32	16.91 ± 23.00	47.22
GRB 180806A	555	0.86	< 95.80	-	-
GRB 180809B	3294	0.98	< 24.63	-	-
GRB 180914A	2276	1.2	< 33.55	-	-
GRB 180914B	7765	3.52	48.48 ± 19.69	26.99 ± 19.00	68.41
GRB 190530A	1859	3.08	46.85 ± 18.53	43.58 ± 5.00	154.05
GRB 190928A	4492	1.77	< 33.10	-	-
GRB 200311A	1082	0.86	< 45.41	_	_
GRB 200412A	911	0.89	< 53.84	-	-
CDD 2009064	524	0.71	. 54 72		

In addition to these, measurements by some other missions (RHESSI, BATSE, INTEGRAL, GAP) take the number to about 50 out of > 5000 GRBs detected till now

Chattopadhyay et al 202

Recent GRB polarimeters

POLAR

Onboard Chinese space station 14 GRBs in one year

In addition to these, measurem

Ctifr

CZTI Onboard AstroSat

20 GRBs in 7 years

GRB Name	Ncompt	Bayes Factor		CZTI PA (°) ^b	sky PA (°)
GRB 160325A	764		< 45.02		
GRB 160623A	1714		< 56.51		
GRB 160703A	433	0.76	< 62.64		
GRB 160802A			< 51.89		
GRB 160821A	2851	0.87	< 33.87		
GRB 170527A	1638	0.79	< 36.46		
GRB 171010A		0.98			
GRB 171227A		0.84	< 55.62		
GRB 180103A	4164	8.52	71.43 ± 26.84	34.67 ± 7.00	
GRB 180120A			62.37 ± 29.79	-3.65 ± 26.00	61.21
GRB 180427A	986	9.25	60.01 ± 22.32	16.91 ± 23.00	47.22
GRB 180806A	555	0.86	< 95.80		
GRB 180809B	3294	0.98	< 24.63		
GRB 180914A		1.2	< 33.55		
GRB 180914B		3.52	48.48 ± 19.69	26.99 ± 19.00	68.41
GRB 190530A	1859	3.08	46.85 ± 18.53	43.58 ± 5.00	154.05
GRB 190928A	4492	1.77			
GRB 200311A	1082	0.86	< 45.41		
GRB 200412A	911	0.89	< 53.84		
CDD 2008064	824		EA 72		

5I, BATSE, INTEGRAI, GAP) take

GRB Polarimetry with Daksha

- Advantages:
 - Large effective area, simultaneous and independent measurement with each face.
 - At least 4-5 times more GRB detections / year than CZTI.
 - No shielding ⇒ Less reprocessing of photons due to scattering
- Disadvantages:
 - No shielding ⇒ Higher background (but simultaneous background measurement available + higher time resolution).

Simultaneous measurement on multiple faces

Hard X-ray polarimetry: Basic concept

- Based on the principle of Compton scattering.
- Polarised photons are Compton scattered in direction \perp to the E field.
- Polarisation shows up as modulation at 2¢, the amplitude of the modulation gives the polarisation fraction / degree (PA or PD) and the phase gives the polarisation angle (PA).

X-ray polarimetry with pixelated CZT detector

- Pixelated detector \rightarrow 8 azimuthal pixel bins
- Compton scattering dominant in 100 400 keV range.
- Successfully demonstrated with AstroSAT/CZTI.
- Modulation curve fitting can introduce additional systematics for off-axis incidences.

Chattopadhyay et. al 2019

Template Matching

Create azimuthal histogram templates for different Polarisation Angle (PA) / Polarisation Fraction (PF) values and match them (using chi sq. fitting) with observed azimuthal histogram (Vaishnava et. al. 2022)

Figure: A. Mehla (IIT Bombay)

Daksha mass model

- ME Box: CZT detectors + support structure modelled with ~few percent accuracy
- HE Box: Only the shield and Nal crystal modelled
- LE Box: Only the support structure modelled.
- Dome frame without satellite bus.
- Only CZT crystal is an active volume.

Minimum Detectable Polarisation (MDP)

• Minimum polarization fraction above which the probability of observed modulation being attained by unpolarized photons by chance is less than 1%.

$${
m MDP} = rac{4.29}{\mu_{100}\,R_s} igg[rac{R_s\,+\,R_b}{T}igg]^{1/2}$$

- μ_{100} = Modulation factor for 100% polarised light R_s = Source count rate R_b = Background count rate T = Total exposure
- Only valid for on-axis incidence as it is derived from the expected sinusoidal variation (Weisskopf et. al. 2010).
- Off-axis incidence \Rightarrow Azimuthal variation deviates from pure sinusoidal variation.

MDP estimation with Monte Carlo method

- We define a Monte-Carlo based approach to compute the MDP for off-axis incidences.
- We call it MC-MDP and it is computed as follows:
 - For a given direction and fluence, simulate large no. of realisations of Unpolarised Azimuthal Histograms.
 - Measure the Polarisation Angle (PA) and Polarisation Fraction (PF) for all the realisations.
 - Obtain the cumulative distribution of measure PF and the 99th percentile of this distribution gives the MDP.

$$H_{i,o}(0) = P\left(\overline{H_i^{grb}}T_{grb}\right) + P\left(\overline{H_i^{bkg}}T_{grb}\right) - P\left(\overline{H_i^{bkg}}T_{bkg}\right) \frac{T_{grb}}{T_{bkg}}$$
GRB duration
One realisation of
Deserved histogram
Time-averaged GRB
histogram
Poisson sampling
GRB duration

0

Daksha MDP computation: One example

Near on-axis incidence, fluence = $1 \times 10^{-4} \text{ erg/cm}^2 (10 - 1000 \text{ keV})$

Daksha Polarisation Measurement Sensitivity

For a fluence of 1 x 10⁻⁴ erg/cm² (in 10 – 1000 keV) we expect to have MDP of 36%

If GRBs are highly polarised, Daksha can measure polarisation of about 5 GRBs per year

Polarisation measurement cross-check

• Check using injected GRBs.

GRB180103A GRB180914B 1.0 Measured value Measured value - 405 1120 Injected value Injected value - 360 0.80.8 -- 960 - 315 800 - 270 0.6 -0.6 F 225 ~ -640 a PF ΡF 180 0.4 - $0.4 \cdot$ - 480 135 - 320 - 90 0.2 -0.2- 160 - 45 0.0 $0.0 \cdot$ 150 150 50 100 50 100 0 PA (deg) PA (deg)

Injected PA/PF = 122°, 71% Recovered PA/PF = 120°, 69% Injected PA/PF = 68°, 48% Recovered PA/PF = 69°, 48%

Thank You

Template Matching

Daksha MDP computation: One example

45 deg incidence, fluence = $1 \times 10^{-4} \text{ erg/cm}^2 (10 - 1000 \text{ keV})$

Ktifr

S Mate, GRB nanosat monthly