import bctools

status

Israel Martinez - Sep 6, 2022 - GRB SmallSats, Brno

What is bctools?

 BurstCube’s ground analysis software
 Designed to do common tasks for count-based instruments
* Using GBM data tools as the starting point. Adding:

- Detector response generator

- Localization

* Detector agnostic. Some parts used in:

BurstCube

Tracker Module

Calorimeter
Micrometeroid Shield

Anti-Coincidence
Detector

AMO39

GECCO COSI

AMEGO-X

https://burstcube.readthedocs.io/en/develop/

Detector response generator and handling

* Built upon MEGAIib (a wrapper tor GEANT4)
- Needs mass model as input
- Simulates all attenuation and internal scattering effects

* Multi-dimensional matrix encoding the effective area and energy migration:
- For each detector and each direction

e First step for spectral fits and source localization

Spacecraft

SQDO

| Shadows by the
Lo other 3 detectors

9x10°

3x10°

1x10°

5x 1071 g

[
o
w

2x1071 @

Channel Energy (keV)

8 x 1072 ‘E
2
10 3x 1072
1x1072
e 5% 1073
B] 2x1073
) " 101 102 103 104

Effective area [cm?] Photon E (keV)
oton energy e

@100 keV 3

Localization (& sub-threshold search)

Source localization using the aggregate signal (i.e. like BATSE and GBM)
Coherent Poisson-based maximum-likelihood analysis

As opposed to x2, it can be used with low counts
Doubles as a sub-threshold search.

Returns HEALPiIX maps

60 ﬁ ‘* =
50 |/ o
N 40 [
Q30 e =
2. /f e A T
10 3 -20
0o - - 0 &
T 20 W
-40 -20 20 40 40
X [cm]
AMEGO-X
114 115 116 117 118 114 115 116 117 118
TS

See https://doi.org/10.3847/1538-4357/ac7ab2

https://doi.org/10.3847/1538-4357/ac7ab2

Derived project: mhealpy

 An object oriented wrapper for healpy (a wrapper for HEALPIx)
 Handles multi-resolutions maps (grid agnostic)

e (QOther features:

Zoom In

Binary operations between maps 0.100
Wold Coordinate System (WCS) compatibility 0.075

Compatible with astropy coordinates and units -

0.025

Full-sky

0.000

-0.025

—-0.050

-0.075

-0.100
-45.100-45.075-45.050 -45.025 -45.000 —44.975 -44 950 -44 925 -44 900

Azimuth angle [deq]

See https://doi.org/10.3847/1538-3881/ac6260

https://mhealpy.readthedocs.io/en/latest/
https://doi.org/10.3847/1538-3881/ac6260

Derived project: histpy

ROQT-like histogram (the good stuff only...)

Allows for common operations when building and
handling a detector response:

Filling

Weighting

Project, slice, concatenate

Convolutions

Tracking under/overflow
Other features:

Sparse matrices
(specially important for MeV instruments)

Compatible with astropy units
Binary operations

Plotting

300 A1

250 1

200 A1

150 -

100 -

10.0

1.5

5.0

25

0.0

-10.0 -75 -50 -25 00 25 50 75 100

100 7S 50 25 00 25 50 75 100

25

175 A

150 A

125 A

100

75 1

50 -

25 1

0

—16.0 —7'.5 —5‘.0 —i.S O.IO 2,‘5 S,‘O 7,'5 10‘.0

Y

-100 -75 -50 -25 00 25 5.0 715 10.0
Y

https://histpy.readthedocs.io/en/latest/

Other derived projects
SCOO0rds vayc

=4 =4

Transformations to and from spacecratt * Yetanother YAML configurator

coordinates Handles paths relative to the contig file
Custom frame class extends all of astropy’s Allows user to easily override any option in the
machinery command line

Multiple conventions to specify the attitude

from scoords import SpacecraftFrame, Attitude # Detector effects such as energy resolution and efficiency
See SimDetectorEffect class for options

detector_effects:
order: ["efficiency", "energy_resolution"] # Names must match entries in 'effects'

import astropy.units as u

effects:
from astropy.coordinates import ICRS SR
name: "SimEfficiencyFromPoints"
. . args:
attitude = Attitude.from_quat([0,1,0,1]) energy: [1.50E+01, 2.00E+01, 3.00E+01, 4.00E+01]
efficiency: | 0.00, 0.20, 0.50, 1.00]
c = SpacecraftFrame(lon = 10%u.deg, energy_resolution: | -
lat = 45 d name: "SimEnergyResolutionFromFit
d .- *U. eg{ args:
attitude = attltude) # These coefficients are the ones reported in ICRC 2019 proceedings,

multiply by 10 so they are in keV (not MeV) and fractional (not %)

You can also specify one list per detector
c.transform_to(ICRS()) coeffs: [4.00E-02, 1.93E+00, 1.00E+01]

<ICRS Coordinate: (ra, dec) in deg
(9.85107612, -44.13602946)>

https://pypi.org/project/scoords/
https://pypi.org/project/yayc/

Things that are still in progress

e FEvent duration calculation A

- A variation of the Bayesian blocks algorithms seems to work pretty well
e Event classification

- Not much progress on this yet. ldeas welcome.

250 - I : 150 - : !
- =~ Bkg fit I I —}— Bkg subtracted |
I— Data | : 125 4 —— Bayesian blocks | .
200 { —— Bayesian blocks | : | |
! l i
! !
! ! l l
150 7 I I 75 _
£ | | » = : |
- I I = I :
o J[1ELF J : ' 3 50 - : :
O 100 - (1 Wi il | S | |
!
. : > l l
50 | | '
- [_ N,
| ! 0 :
| ! :
| | 25 - i i
0 A : : | |
l I l l l l ' l ' | | | I 1 1 1 1 Il 1
—20 -1 =10 = 0 5 1015 20 ~20 -15 -10 -5 0 5 10 15 20

Final remarks

* DPctools is open-source and detector agnostic
* pctools is still under development
- |t something seems useful to you, let’s talk!
 We were funded to merge bctools and GBM data tools (among other things)
Let’s join forces

