Activation, background and signal to noise ratio simulations for CubeSats

Gábor Galgóczi Eötvös University and Wigner Research Centre, Budapest gaborgalgoczi@gmail.com

Jakub Ripa, Riccardo Campana, Tsunefumi Mizuno, Masanori Ohno, Giuseppe Dilillo, Kento Torigoe, and several others...

03.23.2021. – Gabor Galgoczi

Topics

- 1. Signal to noise ratio simulations:
 - CAMELOT CubeSat (bigger "version" of GRBAlpha)
 - Detector response included
 - Simulation of all background sources
 - Simulation of transient astrophysical sources (sGRB, IGRB etc)

Topics

- 1. Signal to noise ratio simulations:
 - CAMELOT CubeSat (bigger "version" of GRBAlpha)
 - Detector response included
 - Simulation of all background sources
 - Simulation of transient astrophysical sources (sGRB, IGRB etc)
- 2. Activation simulations:
 - HERMES CubeSat, THESEUS satellite
 - Developed a custom method, ~100x faster than direct MC
 - Understand short term activation \rightarrow how long the satellite is "blind" after a passing
 - Understand how the background increases after years in orbit

Topics

- 1. Signal to noise ratio simulations:
 - CAMELOT CubeSat (bigger "version" of GRBAlpha)
 - Detector response included
 - Simulation of all background sources
 - Simulation of transient astrophysical sources (sGRB, IGRB etc)
- 2. Activation simulations:
 - HERMES CubeSat, THESEUS satellite
 - Developed a custom method, ~100x faster than direct MC
 - Understand short term activation \rightarrow how long the satellite is "blind" after a passing
 - Understand how the background increases after years in orbit
- We have shared the source code for 1. and will share 2. so other projects don't have to start from scratch
- Satellite geometry is replaceable easily → the work can be reproduced for other missions in a few weeks time → saving lot of man power

Signal to noise ratio simulations

- Why?
 - We wanted to understand what SNR and detection rate we should expect.
 - Can we detect TGFs?
 - How thick should the detector casing be to maximize SNR
- Geant4 simulation framework
- Satellite model can be importad as a CAD model (.stl)

Calibrating detectors

- Measurements done with 241 Am source collimated to irradiate different positions on the scintillator (read by single MPPC) at Hiroshima Uni.
- To obtain optical parameters of scintillators (absorption length, reflectivity of the surface) and to validation the Geant4 simulation framework.

The model

- Full Monte Carlo simulation in Geant4 including optical photon tracking, satellite structure and expected X-ray/particle background. Details in Galgóczi et al. 2021, arXiv:2102.08104
- Code on GitHub (https://github.com/ggalgoczi/szimulacio/tree/master/Bck_4.10.6)
- Outside SAA and for latitude < 50°, i.e. in the regions favourable for GRB detections

Background simulations

- Background detection count rate (cps) for different AI detector housing thickness for E>20 keV
- For a detector with sensitivity ~keV to ~MeV the most important external background is CXB and Earth's X-ray/gamma-ray albedo when outside of SAA and polar regions

Albedo n⁰

23.8

22.3

22.3

21.4

Expected signal to noise ratio

- Medium 1.024s-peak spectrum of sGRB was used
- 2 mm of AI for detector housing thickness
- For direction with highest eff. area the detection SNR are:
 sGRB SNR = 9-13 (64, 256, 1024 ms exposure)
 - SGRD SINK 3-13 (04, 230, 1024 IIIS EXPOSULE) - ICDB SND - 9 20 (64, 256, 1024, 4006 mg gyrod
 - **IGRB SNR = 8-20** (64, 256, 1024, 4096 ms exposure)
 - **SGR SNR = 140** (0.2 s exposure)
 - TGFs are also detectable

Role of activation

Offset by 70221725.36 Plot of file ah160324999sg1_a0_SH1_HITPAT3.lc

How to determine activation?

- Problem with direct MC approach:
 - Each SAA passing should be simulated ~independently (10 000 simulations)
 - ~10-100 year of computational time with enough statistics
- Solution:
 - Decouple the simulation into 3 steps (arXiv:2101.03946)
 - Determine the produced isotopes with MC
 - Calculate the number of isotopes left from each SAA passing (analitical, very fast!) \rightarrow Sum up the isotopes left from all SAA passings
 - Simulate the detector response to these isotopes

HERMES & THESEUS

1. step: isotope production

1. step: isotope production

30 volumes:

experimentalHall phys scint container phys coll_container_phys bus sideXp phys bus sideXm phys bus_sideYp_phys bus_sideYm_phys bus sideZm phys sdd_container_phys optCoupler_phys crystalBox sideZm phys shielding_sideZm_phys crystalBox_sideXp_phys shielding_sideXp_phys Etc.

<u>A műhold anyagai [g]:</u>

EffectiveAluminiumSolid	1093.5
G4_Al	510.113
G4_STAINLESS-STEEL	378.613
G4_SILICON_DIOXIDE	83.52
G4_W	61.2997
FR4	51.5027
Silicone	8.748
GAGG (each crystal)	8.35121
G4_Si	0.0440234
Polymide	0.011583

Input spectrum

- 4 -700 MeV protons
- Inside SAA Gaussian time profile is assumed
- Energy spectrum from AP9 model

Results of step 1

- Number of produced isotopes
- For each volume independently
- For each energy band independently
- Eg. 100 MeV protons, the 6 most abundant isotopes in GAGG

Name Normed number to 100 000 cm⁻² fluence

O15	67699.3
Ga68	68916.9
Ga67	71839.1
Tb154	74030.8
Tb155	88155.1
Tb153	89372.8

2nd step: Build decay chains and sole Bateman eq.

- To analitically calculate number of isotopes for a given decay time:
 - Build the decay chains

- Solve Bateman eq.
$$N_n(t) = \sum_{i=1}^n \left[N_i(0) \times \left(\prod_{j=i}^{n-1} \lambda_j \right) \times \left(\sum_{j=i}^n \left(\frac{e^{-\lambda_j t}}{\prod_{p=i, p \neq j}^n (\lambda_p - \lambda_j)} \right) \right) \right]$$

- For all volumes
- For all energy bands
- For ~all SAA passings
- Sum the results to get how much activity we have

2nd step results

- Lot of decay chains \rightarrow eg. 700 MeV: 1 844 382 decay chain
- Long decay chains:
 - eg. Hf156 → Yb152 → Tm152[482.320] → Tm152 → Er152[1715.400] → Er152 → Ho152[179.400] → Ho152 → Dy152[3500.000] → Dy152 → Tb152[256.930] → Tb152 → Gd152[2880.670] → Gd152 → Sm148 → Nd144
- C++
- 4 hours of computation time (most time for 400 and 700 MeV energy bands)

2nd step results

100 MeV in scintillator • Activity [mBq] Eu149 0.1691 Zn65 0.2145 0.4014 Ga68 Ge68 0.4100 Gd151 0.5584 Gd153 0.8577

 20 MeV in scintillator Activity [Bq] Ge69 1.54e-35Tb156 5.85e-14 Tb155 1.55e-13 Ge71 2.67e-08 Ga68 1.92e-05 Ge68 1.96e-05

3rd step

- Simulate the detector response → Which isotopes deposit energy inside the detectors above threshold?
- Simulate each isotope one by one in each volume
- Norm the detector response by the activity of the given isotope
- By summing up the energy deposition histograms, we can get we would actually measure due to activation

3rd step results

Summary

- Signal to noise ratio simulations:
 - Applied to CAMELOT
 - Simulated all background components and potential targets
 - Chosen best aluminum thickness
- Activation simulations:
 - Applied to HERMES
 - After half a year in orbit, background would be 60 cps due to activation
- Both simulations were designed in a way that the models of the satellites are replaceable easily
- If there is interest we might make the simulations more user friendly