BlackCAT Black hole Coded Aperture Telescope

Abe Falcone (Penn State)

Co-I's: D. Burrows, T. Chattopadhyay, D. Fox, D. Palmer

The BlackCAT CubeSat is a soft X-ray sky monitor, transient finder, and burst detector for high-energy and multi-messenger astrophysics

- Soft X-ray response with wide-FOV is tuned to discover *high redshift GRBs* and probe the epoch of cosmic star formation in the early universe
- Iocate the EM counterparts of the gravitational wave events with sub-arcminute accuracy (as well as other potential multi-messenger events such as HE neutrinos)
- Monitor the transient sky and trigger alerts from Galactic transients, blazars, Short GRBs, tidal disruption events, XRFs, supernova shock breakouts, etc. using wide sky nearly continuous X-ray monitoring

Table 1. Mission overview

Instrument	Soft X-ray coded mask telescope with hybrid CMOS detectors
Spacecraft	Standard 6U CubeSat (from Clyde Space)
Orbit	Sun-synchronous LE orbit
Science	Detection of EM counterparts of gravitational waves, high reshift GRBs, transients, monitoring

Response and localization

- BlackCAT detects and localizes Gamma Ray Bursts, transients, and GW counterparts
 - determines GRB position to ~ 60" in < 30 s
 - sends position to S/C and to ground
 - telemeters light curve and spectral info

- Each mask will consist of a ribbed frame that supports electroformed Nickel coated with gold

- Mask pitch of 320 um matches that of detector superpixels

Table 2: BlackCAT Mask Parameters	
Parameter	Value
Focal Length	158 mm
Mask size (aperture)	170 x 88 mm
Mask element	320 x 320 μm
Detector superpixel	320 x 320 μm
DM FOV	0.95 sr
Open element size	263 x 263 µm
Mask Transmission	>40%
Image Scale	52 "/pixel
	6.9 arcmin/superpixel

Coded Aperture Mask + Silicon Hybrid CMOS Detectors

Source 1

Same technique as INTEGRAL IBIS and Swift BAT, but at lower energies.

 Mask pattern casts X-ray shadows on detector for E < 20 keV.

Coded Aperture Mask + Silicon Hybrid CMOS Detectors

Same technique as INTEGRAL IBIS and Swift BAT, but at Iower (soft X-ray) energies.

- Mask pattern casts X-ray shadows on detector for E < 20 keV.
- Deconvolution of detector image with mask pattern produces sky image

Imaging is a multi-step process using the same sophisticated algorithms used by the *Swift* BAT:
1) Reconstruct sky image with superpixel resolution.
2) Back-project sources at full resolution.

Simulation of 6 s image (single module with H2RG) of field containing Sco X-1, a GRB, and the X-ray background.

2D Coded Aperture Mask

Simulation of 6 s image (single module with H2RG) of field containing Sco X-1, a GRB, and the X-ray background.

Sky Image

Detector Plane Image

Simulation of 6 s image (single module with H2RG) of field containing Sco X-1, a GRB, and the X-ray background.

Reconstructed Sky Image

Blowup of GRB Image at superpixel resolution

Back-projected Sky Image at Full Detector Resolution

- Each mask will consist of a ribbed frame that supports electroformed Nickel coated with gold

- Mask pitch of 320 um matches that of detector superpixels

Value
158 mm
170 x 88 mm
320 x 320 µm
320 x 320 µm
0.95 sr
263 x 263 µm
>40%
52 "/pixel
6.9 arcmin/superpixel

• Each focal plane detector consists of 4 Si hybrid CMOS detectors (Speedsters)

- The intrinsic pixel pitch is 40 um (binned to 8x8 superpixels)
- passively cooled to below \sim -60 C to achieve sufficiently low dark current

Table E.6.a.1.1-3: Detector Parameters		
Parameter	Value	
Туре	Si Hybrid CMOS	
Absorber material	Silicon	
Absorber thickness	100 µm	
Detector Format	550 x 550	
Readout	Sparse Event Driven	
Readout rate	1 kHz	
Pixel Size	40 x 40 µm	
Software binning	8 x 8	
Power	~ 100 mW	
Operating Temp.	~ -60° C	
Time resolution	1 msec	

By reading only the pixels with x-ray events, effective frame rates can be faster by orders of magnitude!

Full Frame Read Out Mode: Comparator threshold set below the noise floor

3x3 Sparse Read Out Mode: Comparator threshold set above the noise floor

Prototype detector (64x64 pixels with 40 micron pitch and 100 micron fully-depleted depth) successfully tested with its in-pixel comparators. The Speedster also has in-pixel CDS, no measurable interpixel crosstalk, and selectable gain (up to $\sim 200 \,\mu\text{V/e}$). Read noise $\sim 12 \,\text{e}^{-12}$ (Griffith et al. 2016)

A larger format device (550x550) with on-chip digitization is being developed now.

HCDs on WRX Rocket (X-ray Hybrid CMOS is now high TRL)

- In collaboration with McEntaffer group at PSU, we launched Water Recovery X-ray Rocket (WRX-R) with a soft x-ray spectrometer that includes an off-plane reflection grating array and H2RG hybrid CMOS detector
- Launched April 4, 2018. First NASA astrophysics sounding rocket payload to achieve water recovery
- Key test of x-ray HCDs in space environment; raises X-ray H2RG to TRL-9
- Raises our Camera Interface Board to TRL-9
- Target: Vela supernova remnant; instrument optimized for 3rd and 4th order OVII; analysis in-progress
- Provided flight hardware experience for students

BlackCAT sensitivity (first module)

Fig 1: Top: Effective area (left) and sensitivity (right) for the proposed 1st BlackCAT configuration, using four 550x550 detectors. Bottom: Distribution of GRB fluence and T_{90} with BlackCAT 5 σ detection threshold (left) and redshift distribution of the detectable GRBs with BlackCAT (right).

BlackCAT X N Parameters & Requirements

• *N* Independently flying identical modules (N=1, or 4-10)

 N •Each module contains a coded mask in front of an array of 4 Si hybrid CMOS detectors

Parameter	BlackCAT single module
Bandpass	1 – 20 keV (goal 0.5-20 keV)
FoV	1.2 sr (~3.5 sr for 6 modules with anti-Sun offsets)
Angular Resolution	6.3 arcmin (FWHM)
Position Accuracy	1 arcmin (30 arcsec for bright GRBs)
Module opening area	17.0 x 8.8 cm
ΔΕ/Ε	<5% at 5.9 keV (goal of <3%)
DXRB rate	~ 540 cts s ⁻¹ (TBD?)
Internal Bkgnd	< 1 cps
Pt Src Sensitivity	\sim 240 mCrabs (7 σ , 30s, 1 module) (with H2RGs)

BlackCAT/s orbit and orientation

BlackCAT is currently proposed as a single 6U cubesat

... we envision an eventual expansion to 4-10 detector modules spaced in Sun synchronous orbits on individual spacecraft

- FOV faces anti-Sun
- solar panels (on side opposite the FOV) always face Sun
- radiator on large side always facing away from Earth
- antenna on large side always facing Earth

Simulation of 6 separately orbiting BlackCAT modules

Offsets of 20° (2 DMs) and 40° (4 DMs) from horizon

- Detectors coated with 1000 Å Aluminum
 - Optical transmission $< 10^{-6}$
 - No damage to detectors from Bright Objects
 - No degradation from Moon
 - Earth is opaque, so no degradation from bright Earth

BlackCAT Pointing Needs & Positioning

Table 3: ADCS	Performance
Pointing Knowledge (3σ)	<30 arcsec
Pointing accuracy (RMS)	<30 arcmin
Stability (deg/s)	±0.0004
Jitter	<50 arcsec

BlackCAT expects to obtain the following centroided position accuracy for GRBs (90% confidence *radius*):

- 70 arcsec for dim GRBs
- 41 arcsec for bright GRBs

BlackCAT Transient Survey

BlackCAT will also survey the sky and produce light curves (0.5-20 keV) of hundreds of transient X-ray sources

BlackCAT has been proposed to NASA as a small CubeSat mission, with a proposed launch in April 2022.

This small mission would detect high redshift GRBs and gravity wave counterparts during this prime-time for multi-messenger missions accompanying advanced GW detectors, as well as LSST and neutrino detectors.

It would pave the way for a network of several enhanced versions of BlackCAT to monitor a larger solid area of the sky with multiple cheap CubeSats viewing different directions.

Monitoring sensitivity (1 Module)

Fig 2. Daily monitoring sensitivity of BlackCAT (black solid line) assuming 50% of duty cycle. Detectable galactic and extra-galactic sources in 1 day is shown in blue solid and blue-dashed lines, respectively.

High redshift GRB Science

Measure the cosmic star formation rate over 5<z<12 by detecting and observing high-redshift gamma-ray bursts and their afterglows.

- Single module will detect many bursts at z>5, and ~1/year at z>8
- redshift derived from ground data
- Burst redshifts will reveal the cosmic star formation rate over 5 < z < 12
- Stellar light was likely the dominant cause of the cosmic reionization
- Star formation estimates are crucial to constructing a full picture of reionization

