

Related presentations on IEEE NSS-MIC 2021: Session N-11, Paper ID 1289, In-orbit radiation damage characterization of SiPMs in GRID-02 CubeSat detector Session N-26, Paper ID 1349, **Detector and Preliminary In-orbit Results of the GRID: a Student CubeSat Mission for Gamma-Ray Burst Observation** Session N-28, Paper ID 1382, Ground-based Calibration of the Detector for the GRID CubeSat Mission

Recent In-orbit Results of GRID: a Student CubeSat Mission for Gamma-Ray Burst Observation

Jiaxing Wen, Xutao Zheng, Huaizhong Gao, Dongxin Yang, Yihui Liu, Dacheng Xu, Yuchong Zhang, Jirong Cang, **Ming Zeng,** Hua Feng, Yang Tian, Zhi Zeng, Binbin Zhang, Zongqing Zhao, On behalf of the GRID collaboration **Tsinghua University, Beijing**

The GRID Project and Detector

Gamma Ray Integrated Detectors (GRID) concept:

- 10 ~ 24 CubeSats scattered in low Earth orbits
- Compact gamma-ray detectors

Schematic drawing of the 6U CubeSat developed by Spacety with the first GRID detector on it ^[2]

Scientific Goals

Joint, multi-messenger detection of GW170817 and GRB 170817A^[1]

Detection of GRBs associated with future NS-NS mergers

- ✓ Confirmation of the EM counterparts
- ✓ Constrain the jet physics (structured vs. cocoon breakout)
- ✓ Possible improvement in position accuracy

Other gamma-ray transients

- Soft gamma-ray repeaters (SGRs)
- Magnetars
- Terrestrial gamma-ray flashes (TGFs)
- Terrestrial electron beams (TEBs)
- Solar flares
- Other high-energy transients

GRID: collect the first dozen GRBs associated with NS-NS mergers

History of GRID since 2016

- The GRID concept was first proposed in October of 2016 by a group of undergraduate students, inspired by discussions with several professors.
- The first and second detector (GRID-01 & GRID-02) have been launched in 2018 and 2020 respectively.
- 25 universities and institutes in China have joined the GRID collaboration.

Instrument Design

3D model of the GRID detector ^[3]

Specifications of GRID-02	
Size	< 0.5U (9.4×9.4×5 cm³)
Weight	~ 780 g
Power consumption	Typ. 2 W Max. 2.8 W
Geometric area	~ 58 cm ²
Field of view	2π
Energy range	Lower threshold < 15 keV Upper threshold ~ 2 MeV
Dead time	~ 20 us
Background count rate	Norm. ~ 2000 cps SAA > 8000 cps
Telemetry	~ 1 GB/day

GAGG:Ce Scintillator Crystal

Bottom view of a GAGG:Ce scintillator with the ESR package ^[3]

- Polished on all faces
- > Wrapped with 65 μm Enhanced Specular Reflector (ESR) film
- \geq 2.2 × 2.2 cm² window coupled with SiPM array

Crystal size	38×38×10 mm ³
Light yield	46000 ph/MeV
Density	6.63 g/cm ³
Effective Z	54
Energy resolution	6% @662 keV
Hygroscopic	No

Values from C&A Corporation

Silicon Photomultiplier

and the GRID SiPM array board (bottom)

Front-End Electronics

Data Acquisition Electronics

- > ARM Cortex M0+ MCU
 - > Automotive-grade
 - running at 40 MHz
 - Iow power consumption
- > 16-bit 1MSPS external ADC
- eMMC data storage
 - ➢ 512 MB
 - SLC cell
- Advanced control functions
 - Adjustable SiPM bias supply
 - Charge injection module

Functional block diagram of DAQ and its connection with FEE, SiPM Carrier, and payload on-board computer board (POBC)^[3]

Firmware

Interrupt		
SPI		
Systick		
IRQ		
КВІ		

Multi-task firmware based on real-time operating system (μC/OS-III)

Basic functions

- Data acquisition, storage and transmission
- Instruction control
- Monitor functions
 - SiPM bias & current monitor
 - > Temperature sensor
 - Close-loop control of SiPM bias supply
- Extra verification functions
 - SiPM I-V measurement
 - Charge injection test

GRID-02 Flight Model

GRID-02 Launched on Nov. 6 2020

Designation Spacetrack catalog number COSPAR ID

46838 2020-079-M

Orbit Country/organization of origin 460 \times 471 km, 97.2° China

Date (UTC) Launch site Launch vehicle 06 November 2020 03:19 Taiyuan Space Launch Center, China Long March 6

Data from https://www.heavens-above.com/

Debug Phase (finished on Nov. 19 2020)

2020.11.06	Launched
2020.11.08	Payload power on 🗸
2020.11.10 - 2020.11.11	Communication interface test 🗸 Low bias test (about 20 V) 🗸
2020.11.12 - 2020.11.13	UTC synchronization test Data transmission test
2020.11.14	Normal bias test (about 28 V) 🗸 Charge injection test 🗡 (bias shift)
2020.11.15 - 2020.11.18	Charge injection test 🗸
2020.11.19	Current - Voltage curve scan ✓ Charge injection test ✓ Observation ✓

I-V measurement result on Nov. 19, 2020

Daily Observation Phase

- Undergraduate students on duty make observation plan every day
- 10 ~ 20 observations per day, 20 ~ 40 minutes each (depends on other payloads and CubeSat platform)
- Shutdown in South Atlantic Anomaly (SAA) and high-latitude region
- ✓ Targeting observation: point to Crab (Inertial pointing mode)
- ✓ Non-targeting observation: random orientation (Inertial or magnetic sun tracking mode)

Example observation plan during Nov. 29 2020 17:00 ~ Nov. 30 2020 12:30 (UTC) 14

GRB 210121A: GRID Detection

A joint detection of short GRB by GRID and other missions More data release on China's National Space Science Data Center

 \leftarrow Light curves of the four missions ^[5]

 \downarrow Localization of GRB 210121A ^[5]

[5] X. I. Wang, X. Zheng, S. Xiao, et al., <u>GRB 210121A: A Typical Fireball Burst Detected by Two Small Missions</u>, ApJ 922, 237 (2021).
[6] H. Gao, D. Yang, J. Wen, et al., *On-Ground Calibrations of the GRID-02 Gamma-Ray Detector*, Exp Astron (2021).

In-orbit Radiation Damage Characterization of SiPMs

~ 93/96/98/110 μA / (year · piece) @5 °C & 28.5V bias

Noise (sigma) increasing rate: ~ 7.5 keV / year

The GRID Collaboration

The 1st and 2nd GRID collaboration meeting

- Started since 2016 October at Tsinghua
- More than 100 Students from 17 universities have joined the GRID collaboration by now

Open source framework

- ✓ Fix the design with 1-2 launches
- ✓ 100% open to member institutes
- Member institutes can build their own detector/ground station/satellite

Conclusion

- GRID is a student CubeSat mission for gamma-ray burst observation.
- Two CubeSats equipped with GRID detector have been launched in 2018 and 2020 respectively.
- GRID have observed its first dozen of GRBs. Close cooperation between GRID and other GRB missions (e.g. GECAM) is established.
- Several universities in China have joined the GRID collaboration. More detectors will be ready for launch in 2022.

Thanks for your attention

Acknowledgement:

This work was supported by the Tsinghua University Initiative Scientific Research Program.

Monthly GRBnanosat Telecons

GRID-01 Flight Model

GRID-01 Launched on Oct. 29 2018

Designation Spacetrack catalog number COSPAR ID

43663 2018-083-B

Orbit Country/organization of origin 509×524 km, 97.5° China

Date (UTC)29 OLaunch siteJiuquLaunch vehicleChan

29 October 2018 00:43 Jiuquan Satellite Launch Center, China Chang Zheng 2C