

GRID – a Student Project

Hua Feng

Tsinghua University

On behalf of the GRID collaboration

The GRID Concept

- 10-24 CubeSats in LEO
- Scintillation detector, ~60 cm² each
- Localization accuracy for GRBs within 200 Mpc
 ✓ <1° (for an on-axis event, ~0.14 yr⁻¹)

 - \checkmark 10° \sim 15° (for a GRB 170817A like event, \sim 5 yr⁻¹)

GRID (Gamma Ray Integrated Detectors)

Crystal - GAGG:Ce

Crystal size	38 imes 38 imes 10 mm ³		
Light yield	46000 ph/MeV		
Density	6.63 g/cm ³		
Effective Z	54		
Energy resolution	6% @ 662 keV		
Hygroscopic	No		

4 Arrays of SiPM 1 Array = 4 \times 4 chips (SenSL J-60035)

Bias voltage	~ 30 V
Photon detection efficiency	> 25%
Dark count rate	~ 150 kHz/mm ²
Temperature dependence of Vbr	21.5 mV/°C

Detector

Spe	cifications
Size Weight	0.5 U (10×10×5 cm ³) 780 g
Power	3 W
Detection area	~ 58 cm ²
Energy range	10 keV ~ 2 MeV
Dead time	~ 10 µs
Background count rate	~ 500 Counts/s
Telemetry	~ 1 GB / day

Flight model & satellite

Energy Spectra

Space environment test

Test		Time	Conditions
Mechanical	Random	2018.8	Frequency: 5~2000 Hz Acceleration < 100 g
	Sinusoidal	2018.8	Frequency: 5~2000 Hz Acceleration < 100 g
	shock	2018.8	Acceleration: 1000 g
	Resonance Search	2018.8	Three Times Frequency: 5~2000 Hz
Thermal		2018.8	6.5 cycles, −10 ~ 35 °C
Thermal Vacuum		2018.9	1 cycle, −10 ~ 30 °C Th228 Acquisition at −5, 0, 5, 10, 15, 20 °C

Space environment simulations

Mechanical

Thermal vacuum

Data Transfer and rapid communication?

How to build a world-wide UHF receiving network?

UHF broadcasting

• UHF

- small data package (6.3 kB)
- Triggered data
- Lightcurves with 4 different time steps in 8 different energy bands (programable)

- full data package
- events file

A student project

- Started since 2016 October at Tsinghua •
- More than 50 Students from 16 universities have joined the GRID ۰ collaboration by now
- Most of the hardware work was done by students ۲

The GRID Collaboration

Open source framework

- $\checkmark\,$ Fix the design with 1-2 launches
- \checkmark 100% open to member institutes
- Member institutes can build their own detector/ground station/satellite

Future Plan

- Stage I
 - Technical demonstration (2018)
 - First launch
 - Ground segment, database and reduction software
- Stage II
 - Preliminary operation (2019)
 - A network of 3 or more CubeSats
 - To detect ~100 GRBs
- Stage Ⅲ
 - Normal operation (2020~2025)
 - At least 10 CubeSats in the orbits

Conclusion

- GRID
 - Compact: 0.5 U
 - Low cost
 - Student training
 - Open and sharing

Expecting a larger GRID