PICSAT

Mathias Nowak, Sylvestre Lacour, Vincent Lapeyrère, Lester David, Antoine Crouzier

LESIA, Observatoire de Paris

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Science objectives

Main objective of PICSAT: constant monitoring of the photometry of Beta Pic, at ~100 ppm/hour accuracy to detect the transit (predicted for early 2018)

- Characterize the Hill Sphere
- Detect any orbitting material (rings, moons, if any)
- Inohomogeneities in the disk
- Detect exocomets in visible band

Tech demo:

- Demonstrate our ability to inject starlight in a single mode fiber

2018/09/13

Mission overview: satellite

Mission overview: ADCS

ADCS requirements for science mission:

- Detumbling (beginning of mission)
- Target pointing on beta pic (0.1 deg accuracy)
- Allocated power: 2W

iADCS100 from Hyperion Technologies

- 3 axis control, with reaction wheels + mag. torquers
- includes built-in ST200 star tracker (30 arcsec accuracy)
- 1.4 W power consumption (nominal)
- "Fully autonomous, highly integrated system"
- "Target pointing, nadir pointing, sun-pointing, de-tumble"

SPIE Astronomical Instrumentation 2018, Austin, Texas - USA

Launch on the PSLV-C40 January, 12, 2018

.

NI

Operations: UHV/VHF ground station

	X	and hard the fit of a second	
		A LAND MARKAN	
	Ground station specifications		
	TX frequency range	145,910 MHz (VHF)	
	Antenna Gain	12.3 dBi (VHF)	STATE OF STATE
a se a silita	Beamwidth	38° (VHF)	
	Maximum output power	20dBW	
	Uplink modulation	AFSK	
	Uplink data rate	1200 bps	1
	Uplink protocol	AX.25	
T-I	RX frequency range	435,525 MHz (UHF)	
	Antenna Gain	14.1 dBi (UHF)	F
	Beamwidth	39,7° (UHF)	y a
	Downlink modulation	BPSK - G3RUH scrambling	1
	Downlink data rate	1.2-9.6 kbps	
1	Downlink protocol	AX.25	

PICSAT communication frequencies:

- 145.900 MHz uplink
- 435.525 MHz downlink
- \rightarrow Radioamateur frequencies

We tried to involve radioamateurs in the project from the very beginning:

- Radio transponder on-board the satellite
- Mission website (picsat.obspm.fr) for data visualization and outreach
- @IamPicSat Twitter account to give feedback to the community
- Communication protocol and data format fully opened and accessible on the website
- SiDS server to automatically send the data frames to the mission database

Operations: HAM network

Beacons received from 2018-02-25 00:00:00 to 2018-03-01 00:00:00

Operations: HAM network

Operations: HAM network

Operations: timeline

January, 12, 1st pass over Meudon (5 hr after launch):

- Satellite beacon received
- Antenna deployment confirmed

January 12, 2nd pass over Meudon (6 hr after launch):

- First TC sent to the satellite, and first response seen
- Communication link established

January , 18 (6 days after lauch):

- Solar panel deployment command

January, 19 (7 days after launhed):

- Solar panel deployment confirmed

January, 25 (13 days after launch):

- Payload started

January 26 (14 days fter launch):

- Detumbling of the satellite to slow down rotation and get an ST fix

January 27 – March 20: Target pointing?

Operations: what happened on March, 20?

	W2RTV @w2rtv1	8 🦂		Suivre v			
@lamPicSat 1431z 45w NOTHING HEARD ! where is the bird ? Tradulre le Tweet							
07:36 - 2	20 mars 2018	8					
Q	17	\bigcirc					
	Tweeter vo	otre réponse					

Operations: what happened on March, 20?

Beacons received from 2018-03-20 08:00:00 to 2018-04-01 00:00:00

Operations: what happened on March, 20?

Towards a network of GRB detecting nanosatellites, Budapest

2018/09/13

In conclusion: the project timeline

