

ITTU - CEA Saclay

sur les lois fondamentales

Institut de recherche

l'Univers

The Gamma-Ray Burst mission SVOM

"Towards a network of GRB-detecting nanosatellites" workshop.

Hungarian Academy of Sciences, Budapest, 2018/9/13-14

on behalf of the SVOM collaboration

Stéphane Schanne Département d'Astrophysique CEA Saclay / IRFU

Gamma-Ray Burst science questions

GRB phenomenon

GRB progenitors

GRB physics

 Acceleration and nature of the relativistic jet Radiation processes, gamma-ray emission The early afterglow and the reverse shock

Diversity and unity of GRBs, central engine

Long GRB-supernova connection Short GRB-merger connection

Cosmology

- Cosmological lighthouses (absorption systems) Host galaxies
- Star formation tracer
- Re-ionization of the universe
- Cosmological parameters
- **Fundamental** physics

Short GRBs and gravitational waves Origin of high-energy cosmic rays Lorentz invariance test

Following the way shown by the Neil Gehrels Swift observatory Need of a <u>complete sample</u> of GRBs, with spectral and temporal coverage of the prompt and afterglow combined with a distance measurement

SVOM mission

- Space mission dedicated to the detection and study of Gamma Ray Bursts and their use for astrophysics and cosmology
- Cooperation between China and France
 - Space agency agreement (CNSA-CNES)
 - Mission fully founded in China and France CCCS
 - □ in Phase C since beginning 2017
 - □ Satellite: built by CAS (SECM), 950 kg, 450 kg payload
 - □ Launch: foreseen end 2021 with LM2C from Xichang, China
 - □ Orbit: LEO, ~620 km, 30° incl.
 - Operations: 3 years (+ 2 years extension)
 - Involvement of 10 French + German + UK Labs

NAOC, BeijingSECM, ShanghaiXIOPM, Xi'anRADI, HainanNSSC, BeijingCLTC, Xi'anIHEP, BeijingCALT, Xichang

nghai CEA-Irfu, Saclay In IAP, Paris APC, Paris ng CNES, Toulouse IRAP, Toulouse LAM, Marseille CPPM, Marseille GEPI, Meudon LAL, Orsay LUPM, Montpellier MPE, Garching University of Leicester

CNSA

圈科学院

CAS

SVOM objectives

Build complete sample of GRBs, with <u>spectral</u> and <u>temporal coverage</u> and <u>distance measurement</u>

Scientific requirements of SVOM

Prompt emission:

- Trigger on all known types of GRBs (>200 in 3 years) in particular X-ray rich GRBs, high-z GRBs and under-luminous GRBs
- Provide fast and reliable (<12 arcmin) GRB positions
- Send alerts to the world-wide community (<30 s)
- Temporal variation and spectrum (from visible to MeV)

Afterglow:

- Spectrum from IR & visible to X-rays. Provide accurate (~arcsec) GRB positions
- Permit redshift measure for large fraction of triggered GRBs (~1/2)

Operate within the world-wide community:

- Benefit from new generation follow-up instruments: JWST, LSST, SKA, CTA
- Contribute to multi-messenger astronomy (GW and Neutrino telescopes)

4

SVOM instruments

4 space instruments:

- ECLAIRs gamma-ray imager & trigger
- GRM gamma-ray monitor
- MXT X-ray focusing telescope
- VT visible band telescope

3 ground telescopes

- GWAC ground wide angle camera
- F-GFT & C-GFT: ground follow-up telescopes

ECLAIRs: hard X-ray Imager & Trigger

- Allocations: Mass ~ 90 kg, Power ~ 90 W
- Detection plane: 1024 cm²
 - 6400 CdTe pixels (4x4x1 mm³)
 - Energy range: 4-150 keV
- Shield: C/AI + Pb + Cu
 - FoV = 2 sr (total)
- Mask: Ta, 40% open, self supporting
 - Localisation accuracy <12'

(at detection limit, 90% C.L.)

- Aeff = 400 cm² @ 10-70 keV
 - > 200 cm² @ 6 keV
- UGTS (control and trigger unit)
 - All photons to ground (18 Gbit/day 6-12 h delay)
 - GRB trigger & localization software:

alert to ground via VHF & spacecraft slew for follow-up

Coded Mask

Shielding -

DPIX Detection Plan

UGTS

DPIX Front End Electronics

ECLAIRs UGTS: dev. in the lab

CNES, CEA

Hardware : 10 boards, cold redundant, rad tolerant

- Power supply (2+4) + I/O board (2) + CPU board (2)
- FPGA: data acquisition and pre-processing
- dual core CPU (2×50 Mflops): processing tasks

Software :

- OS : time partitioning hypervisor
- Custom scientific libraries : C++
- software compiles for on-board target and linux on-ground for performance tests

EQM model

interconnection tests with Chinese PDPU in Shanghai foreseen beginning 2019

BBM model

representative hardware for flight software dev.

ECLAIRs UGTS: onboard Trigger

CEA

- 2 algorithms (on 4 energy bands, 4-120 keV):
- Count-rate trigger (10 ms to 20 s) followed by coded mask deconvolution
- Image trigger (systematic deconv. 20 s, stack images to 20 min, known source cat.)

Trigger various GRB types

sensitive to Long, Short, Soft, X-Ray rich, Ultra-long...

Expected ECLAIRs rate: ~70 GRB/yr

Detailed simulations of algorithm prototypes on GRB databases of previous missions (BATSE, Fermi, Swift, Hete-2)

Z

GRM: onboard Gamma-Ray Monitor

• 3 Gamma-Ray Detectors (GRDs)

- Nal(Tl) (16 cm Ø, 1.5 cm thick)
- Plastic scintillator (6 mm) to monitor and reject particle events
- FoV = 2 sr per GRD
- Energy range: 15-5000 keV
- Aeff = 190 cm² @ peak
- Rough localization accuracy
- Expected GRD rate: ~90 GRB/yr
- GRM data sent to ECLAIRs
- \rightarrow enhance Trigger sensitivity to short GRBs

IHEP

GRB 170817A in ECLAIRs & GRM

ECLAIRs

GRN

Parameters of Fermi-GBM (public GCN 2017/8/17 10:00 GMT)

→ Up to 35°: ECLAIRs alert to ground (good loc.) + slew request
 → Up to 50°: GRM alert to ground (crude loc.)

GRB prompt observations by SVOM

- Ground-based Wide Angle Camera (GWAC)
- dedicated to SVOM, partially operational already in 2018
- sites: Ali (China) and CTIO (Chile)
- 40 camera units, 5400 deg², following ECLAIRs FoV
- band: 0.5-0.8 μ m; sensitivity: M_V=16 in 10 s
- external trigger and self-triggering
- ~16% of ECLAIRs-triggered GRBs observable by GWAC

GRB

Cea

MXT: onboard X-ray Telescope

- Micro-pores optics (Photonis)
 with square 40 µm-size pores
 in a "Lobster Eye" configuration
- Focal length: 1.15 m
- FoV = 57x57 arcmin²
- pnCCD camera
- Energy range: 0.2-10 keV
- Aeff = 27 cm² @ 1 keV (central spot)
- Energy resolution: ~80 eV @ 1.5 keV
- Localization accuracy < 80 arcsec (20 arcsec for bright GRBs) within 5 min (for 50% of GRBs)

VT: onboard Visible Telescope

GRB afterglow observations by SVOM

- Ground Follow-up Telescopes (GFTs)
 - Chinese Ground Follow-up Telescope (C-GFT)
 - Robotic 1.2 m telescope, Weihai observatory (Jinlin province)
 - FoV = 90x90 arcmin², 400-900 nm
 - French Ground Follow-up Telescope (F-GFT)
 - Robotic 1.3 m telescope, San Pedro Martir (Mexico)
 - FoV = 26x26 arcmin²
 - Multi-band photometry (400-1700 nm, 3 simultaneous bands)
 - Contribution to LCOGT network (12×1m + 2×2m tel.)
 - ~75% of ECLAIRs-triggered GRBs immediately visible by one ground telescope (GFTs+LCOGT)
 - → Very large telescopes for redshift determination

14

GRB 170817A in VT & GFT

Simulation of the event (counts+background)

Parameters of the kilonova in NGC 4993

SVOM GRB observation scenario

SVOM pointing strategy

Svom

For optimal ground follow-up to determine redshift :

- $\circ~$ favor sky observable from Hawaii, Chile and Canary Islands
- o satellite attitude roughly antisolar towards the night

To maintain satellite radiators cold :

satellite attitude antisolar within 45°

For best GRB detection performance :

keep Sco X-1 and Galactic Plane outside the ECLAIRs FoV

ECLAIRs sky exposure (4.5 Ms towards Galactic poles in 1 yr) **MXT and VT pointings** (in 1 yr nominal mission)

Cea

Scientific programs of SVOM

- Core Program (CP) : follow-up GRB triggers of ECLAIRs
- General Program (GP) : AGN, ULX, TDE, Galactic sources (CV, XRB,

pulsars, magnetars, TGF), background studies (CXB), etc

• **Targets of Opportunity (ToO)**, 1 / day: follow-up external triggers: multiwavelength (SKA, LSST, CTA, HAWC) or multi-messenger (GW, neutrino)

Scientific programs of SVOM

- Core Program (CP) : follow-up GRB triggers of ECLAIRs
- General Program (GP) : AGN, ULX, TDE, Galactic sources (CV, XRB,

pulsars, magnetars, TGF), background studies (CXB), etc

• Targets of Opportunity (ToO), 1 / day: follow-up external triggers: multi-

wavelength (SKA, LSST, CTA, HAWC) or multi-messenger (GW, neutrino)

Data policy:

•**Core Program** Most scientific products generated by the Burst Advocate are public as soon as they are available. All scientific products are public 6 months after data observation

•General Program All data products are distributed to the responsible Co-I. Proprietary period: 1 year, after which the data products are public

•**Targets of Opportunity** SVOM ToO: same policy as Core Program -MoU ToO: policy follows the agreement of MoU -Other ToO: data public as soon as available

Two points related to this workshop

SVOM VHF network

• SVOM on-board VHF emitter to VHF receivers on Earth.

Alerts transmitted over internet

- Low data rate: 300 bits/s
- VHF network under satellite orbit (a=620 km, i=30°)
- \rightarrow up to 45 stations deployed by CNES
- → based on existing CNES networks (DORIS, REGINA)
- + specific partners from scientific laboratories
- to CEA Saclay (France) within 30 sec (in 65% of cases)

Existing Geodesy networks of CNES: for monitoring of Earth stations drifts and satellite trajectories

SVOM VHF station kit

We would be glad to discuss with you:
→ to join SVOM by hosting a VHF station (if you can provide a suitable site)
→ to use the VHF network for alerts from your nanosatellite (if you can accommodate a VHF emitter onboard)

Family of nano-satellites in France concerned

Development of French nano-satellite family

- cooperation CNES/Nexeya
- kicked-off in may 2017
- Nexeya : platform development
- production facilities in Toulouse

First demonstrator: "ANGELS" _________(Argos NEO Generic Economic Light Satellites)

- prototype of a new Argos constellation
- Argos: environment study & protection, location and data collection, satellites + >20 000 Earth bound emitters, e.g. > 8000 animals tracked.
- Platform by Nexeya: 3U format
- Payload by CNES and TAS: Argos NEO instrument
- Launch foreseen in 2019

23

CNES is currently opening a call for proposals on nano-satellites (to be evaluated in 2019). We would like to hand-in a proposal for a GRB nano-satellite and/or take part in a constellation.

Characteristics:

- modular (3U to 27U)
- weight < 50 kg
- multi-mission, adaptable
- Industrial, reliable

Conclusions

Concluding words on SVOM

SVOM designed to study the diversity of GRBs and get a complete sample, good spectral and temporal coverage of the prompt and afterglow, optimized follow-up strategy to get redshift of a large GRB fraction (~50%)

SVOM observation plan and instruments (space+ground-based) suited to detect high redshift GRBs

SVOM is prepared for multi-messenger era: ToO follow-up of GW and neutrino alerts

More information: "The Deep and Transient Universe in the SVOM Era: new Challenges and Opportunities, Scientific prospects of the SVOM mission", J. Wei, B. Cordier et al., arXiv:1610.06892

Cea

Thank you !

Temporal & spectral GRB coverage

