RadCube: The Space Weather Monitoring Satellite

Dr Andrea Stradi, environmental researcher on behalf of Mr Balazs Zabori, project manager

MTA Centre for Energy Research

C3S Electronics Development LLC

Technology dependence in the space age

- Space weather influences
 - Satellite services
 - Ground infrastructures
 - Manned space flights
 - Future Lunar/Mars missions

2

We need space weather monitoring services! → cost–effective solution: fleet of CubeSats

3

Similar missions

- Mainly big science satellite missions
- No existing space weather monitoring network
- No instrumentation with the following capabilities:
 - Measuring cosmic rays and magnetic field at the same time
 - Including a small boom system to support the magnetic field measurements
 - Including radiation hardness test capabilities
 - Realised within the constraints of a 3U CubeSat mission

RadMag instrument concept

- RadMag = Cosmic Radiation and Magnetic Field Instrument Package
- Space weather monitoring by combination of cosmic ray and magnetic field measurements into one instrument
- Specification is reflecting to ESA SSA SWE product requirements
- Cosmic ray measurements by silicon based telescopes: proton, electron, HZE spectra separately
- In-board and outboard 3-axis magnetoresistive sensor
- Built-in boom system to support the magnetic field measurements
- Built-in dose rate monitoring and Radiation Hardness Assurance (RHA) capabilities
- Small size to fit for CubeSat/SmallSat missions (fitting ~1.2U CubeSat standard)
- Low-cost alternative in future space weather studies and forecast services and in general radiation damage monitoring for commercial use
- Instrument development within ESA GSTP programme

Radiation Sensor System specification

Parameter	Values, ranges	
Particle types	electrons, protons, heavy ions	
Minimum electron energy	100 keV	
Electron energy range	0.3 MeV – 8.0 MeV Channel number: 2-5 Contamination: <10 %	
Minimum proton energy	1 MeV	
Proton energy range	4 MeV – 1 GeV Channel number: 11-18 Contamination: <10 %	
Heavy ion energy range (He&C&N&O&Fe)	100 MeV/n – 1 GeV/n Channel number: 4 Contamination: <10 %	
Field of view for electron and proton measurement (half-angle)	31°	
Field of view for heavy	46°	
ion measurement (half- angle)	SPACE	

Magnetometer specification

Parameters	Mode	
	Nominal	High resolution
Range	± 60,000 nT	
Sampling rate	1.0 Hz	10 Hz
Orthogonal directions	3	
Orthogonality error	≤0.1°	
Noise limit	≤500pTrms/VHz (at 1Hz at 25°C)	
Temperature coefficient	≤±1 nT/°C	
No. of sensors	2 (1: inboard, 1: outboard)	

7

RADCUBE in-orbit demonstration mission

- In-orbit demonstration 3U CubeSat mission within ESA GSTP 6.3 programme
- Lead by a Hungarian CubeSat Company (C3S LLC)
- Project is reaching the CDR
- Expected launch: Q1 of 2020

 Future vision: CROSS Network = Cosmic Ray Observatory Satellite System

8

COMPLEX SYSTEMS & SMALL SATELLITES

CROSS Network = Cosmic Ray Observatory Satellite System

- Multi-Payload and Multi-Sat concept
- C3S provides 6/12U platforms for MTA-EK's RadMag 2.0 (~2.5U)
- The rest of the free units can be rented

Here

COMPLEX SYSTEMS & SMALL SATELLITES

9

Here

Summary

- New space weather monitoring instrument development: RadMag
- Unique combination of cosmic ray and magnetic field measurements into one instrument
 - Very small size to fit for CubeSat/SmallSat missions (fitting ~1.2U CubeSat standard)
 - Built-in boom system to support the magnetic field measurements
 - Relatively low-cost alternative for future space weather studies and in general radiation damage monitoring for commercial use
- Instrument development just now passed PDR and moving into phase C
- 1st IOD Mission: RADCUBE 3U CubeSat
 - Expected launch is Q1 2020
- Future vision (CROSS Network): CubeSat/SmallSat constellation for space weather and radiation damage monitoring services

Thank you for your attention!

<u>Web</u>: spacedosimetry.com <u>E-mail</u>: zabori.balazs@energia.mta.hu

