Software Discussion

- Onboard instrument software
 - Tied to hardware design
 - Onboard OS, microcontrollers, FPGAs, some combination?
 - Trigger algorithms
 - GBM uses trailing background, then binning on various timescales and energy scales
 - If large telemetry volume, send everything down
 - Triggering allows you to select intervals
 - Limitations onboard processing
 - Add some features of GBM Untargeted search
 - Background modeling
 - Additional time/energy ranges
 - Increased phase steps
 - Commanded download of intervals of interest
 - Trigger classification
 - False trigger rejection
 - Suppress based on classification
 - Bright transients
 - Onboard localization
 - How useful in a nanosat? It compresses data to only send that info.
 - GBM uses a simple lookup table of rates and sky position in spacecraft coordinates single table not very relevant if orientation changing
 - Languages
 - GBM software written in C
 - Current state of the art is C++
 - Downlinked file formats
 - Portable file formats with standardized readers
- Ground Pipeline
 - Ground localization
 - Relative Rates
 - GBM uses simplified version of detector response for trial localization, chi squared fitting using database of atmospheric scattering (5 angles GRB position with respect to spacecraft and earth), spectral template
 - Bayesian approach using a combination of directional and spectral information
 - To combine multiple nanosats try more spectral templates?
 - Timing approach
 - If spectral response is different enough, light curves will be different

- Model pulse on board and send parameters right away rather than photon data
- Standard file formats types and contents
 - Will be easier to combine data if it's generated the same way
- Scientific data analysis temporal/spectral/localizations
 - Common databases atmospheric scattering
 - Calibration database shared or separate
- Every team run their own pipeline, or run joint pipeline, or hybrid approach?
- Databases
 - Have ability to reprocess data as we learn and have new versions of software?
 - Documention
- Summary
 - Write up full description of GBM trigger algorithm, maybe share some of code
 - Write white paper describing trigger algorithms, source classifications and limitations, as recommendations to each mission
 - Need to agree on standard file format
 - Need to determine where division is between individual mission pipelines, and a common pipeline
 - Open source platform with core development team
 - As we develop new versions of software, do we have central database to be able to reprocess?