
bc-tools

Israel  - July 2nd, 2020 - GRB nanosats



Overview
• bc-tools is BurstCube’s main software package 

- Simulations 

- Analysis 

• Written in Python 

• Currently under development 

• Built around and compatible with gbm-data-tools 

• bc-tools is detector-agnostic 

- No hardcoded values 

- Easily adapted for other detectors through a configuration file

2

https://gitlab.com/burstcube/bc-tools
https://fermi.gsfc.nasa.gov/ssc/data/analysis/gbm/gbm_data_tools/gdt-docs/


About gbm-data-tools
• Python library developed to analyzed GBM data 

• Written by Adam Goldstein, William H. Cleveland and Daniel Kocevski 

• Can perform most of the tasks we want in a scintillator-based gamma-ray 
detector: 

- Data binning and light curve generation 

- Background estimation 

- Spectral fitting 

- Source injection 

• It has a great high-level API, but also well-documented access to low-level 
classes 

• Built around existing GBM’s workflow and data files.  
For each burst you have: 

- Data files with counts, such as Time-Tagged Events (TTE) 

- Detector response matrix specific for this event.  
One RSP file per detector, which you have to pair manually.

3



bc-tools as a detector response generator
• gbm-data-tools already does most of what we what, we plan to use it and not 

duplicate efforts 

• BurstCube’s data files are going to have the same format as GBM (FITS files) 

• At first order, all we need is to generate a detector response file 

- The RSP file (also a FITS file) contains the effective area and migration matrix: 
real energy vs energy channels 

- Corresponds to a specific direction and to a [single] detector 

- Can contain responses for multiple time intervals  
(e.g. long GRB, spacecraft rocking) 

• The app bc-rsp does precisely this: 

- Uses MEGALib for a particle-by-particle MC simulation 

- Build the detector response matrix (a simple 2D array) 

- This is uses to construct a GBM’s RSP instantiation using the method 
from_arrays()

- Uses RSP.write() to generate a file ready to be used by GBM

4

.rsp



The bc-tools full detector response file
• bc-rsp not just generates a .rsp for a given 

direction and detector, but a full response 
describing the instrument as a whole 

- All detectors are included, bc-tools knows 
how to handle them based on their name 

- The response is computed for multiple 
directions in the sphere: 

• A HEALPix grid is used 

• Response for arbitrary locations are 
obtained through interpolation. 

• This full detector response is saved into a HDF5 
file  (~GB size) 

- Supports partial loading, only the needed 
bytes are loaded into memory 

• You can extract GBM’s RSP objects from there 
and switch to using gbm-data-tools if you want:

5

http://docs.h5py.org/en/stable/


Using bc-tools on its own
• In the final design, gbm-data-tools will be under the hood 

• The user will have access to the full detector response: 

- Timing and detector matching will be done automatically 

- The full response will be used for localization as well (not part of gbm-data-tools) 

• Will output the results from the maximum likelihood calculations. This allows to: 

- Perform a more in-depth analysis. e.g. localization vs spectrum correlations 

- Combine the data easily with other experiments: 

• LIGO-Virgo joint analysis 

• 3ML plug-in 

• The ability to get a GBM-compatible .rsp will always be there 

- Backward compatibility with software like XPEC

6

.hf5



Build your own instrument
• An instrument is defined by: 

- A Geomega (MEGALib) geometry 

- Names for the single detectors 

- Calibrated instrument effects. e.g. 

• Energy resolution vs energy 

• Efficiency vs energy 

• A YAML config file holds these and most other parameters 

- Job specific (e.g. random seeds) are passed through 
command-line options 

- Any parameter can be modified on the fly from the command-
line for easy testing. e.g. 
--override simulations:geometry=calib_bc.geo

dummy geometry

https://github.com/zoglauer/megalib/blob/master/doc/Cosima.pdf
http://megalibtoolkit.com/


Final remarks
• Generation of full detector response files is pretty much done 

• Source localization code is the next step 

• Automatic science pipelines still need to be developed 

• A possible challenge: atmospheric scattering 

- The atmospheric simulation itself  
will not be part of bc-tools 

- We are hoping GBM’s simulations  
are good enough for BurstCube. 
 
 

• The project is public and we welcome contributions through merge 
requests: 
gitlab.com/burstcube/bc-tools

8

http://gitlab.com/burstcube/bc-tools

