bc-tools

Israel - July 2nd, 2020 - GRB nanosats



Overview

bc-tools is BurstCulbe’s main software package

- Simulations

- Analysis

Written in Python
Currently under development A

Built around and compatible with gbm-data-tools

bc-tools is detector-agnostic
- No hardcoded values

- Easily adapted for other detectors through a configuration file



https://gitlab.com/burstcube/bc-tools
https://fermi.gsfc.nasa.gov/ssc/data/analysis/gbm/gbm_data_tools/gdt-docs/

About gbm-data-tools

Python library developed to analyzed GBM data
Written by Adam Goldstein, William H. Cleveland and Daniel Kocevski

Can perform most of the tasks we want in a scintillator-based gamma-ray
detector:

- Data binning and light curve generation
- Background estimation

- Spectral fitting

- Source injection

It has a great high-level API, but also well-documented access to low-level
classes

Built around existing GBM’s workflow and data files.
For each burst you have:

- Data files with counts, such as Time-Tagged Events (T TE)

- Detector response matrix specific for this event.
One RSP file per detector, which you have to pair manually.



bc-tools as a detector response generator

gbm-data-tools already does most of what we what, we plan to use it and not
duplicate efforts

BurstCube’s data files are going to have the same format as GBM (FITS files)
At first order, all we need is to generate a detector response file

- The RSP file (also a FITS file) contains the effective area and migration matrix:
real energy vs energy channels

from gbm.data import RSP

- Corresponds to a specific direction and to a [single] detector

- Can contain responses for multiple time intervals * \
e.g. long GRB, spacecraft rockin
(e.9. long P 9) rsp

The app bc-rsp does precisely this: *

- Uses MEGALIb for a particle-by-particle MC simulation
- Build the detector response matrix (a simple 2D array)

- This is uses to construct a GBM’s RSP instantiation using the method
from arrays()

- Uses RSP.write() to generate a file ready to be used by GBM




The bc-tools full detector response file

 pbc-rsp not just generates a .rsp for a given
direction and detector, but a full response from BurstCube.io import FullRSP
o , from BurstCube.util.coords import SpacecraftCoords
describ Nng the iInstrument as a whole import BurstCube.util.units as u

- All detectors are included, bc-tools knows with FullRSP(data.path/'sims/drm.h5') as frsp:

how to handle them based on their name rsp = frsp.get_rsp(detector = "SQD0@",
coords = SpacecraftCoords(45%u.deg, 45%u.deg))

- The response is computed for multiple
directions in ’[he Sphere- from gbm.plot import PhotonEffectiveArea

effarea_energy = PhotonEffectiveArea(data=rsp)

« A HEALPIX grid is used

102 ‘
* Response for arbitrary locations are . T -
obtained through interpolation. <
 This full detector response is saved into a HDES § 100
file (~GB size) 2
- Supports partial loading, only the needed ¥ o
bytes are loaded into memory
* You can extract GBM’s RSP objects from there 1071 - .

107 10° 104 10°
Photon Energy (keV)

and switch to using gbm-data-tools if you want:


http://docs.h5py.org/en/stable/

Using bc-tools on its own

In the final design, gbm-data-tools will be under the hood

The user will have access to the full detector response: import gbm V) 0C

- Timing and detector matching will be done automatically
- The full response will be used for localization as well (not part of gbm-data-tools)
Wil output the results from the maximum likelihood calculations. This allows to:
- Perform a more in-depth analysis. e.g. localization vs spectrum correlations
- Combine the data easily with other experiments:
 LIGO-Virgo joint analysis
e SML plug-in
The abllity to get a GBM-compatible .rsp will always be there

- Backward compatibility with software like Xgpee



Bulld your own instrument

 An instrument is defined by:

>

- A Geomega (MEGALIib) geometry

- Names for the single detectors

- Calibrated instrument effects. e.qg. dummy geometry

* Energy resolution vs energy
e Efficiency vs energy

A YAML config file holds these and most other parameters

- Job specific (e.g. random seeds) are passed through
command-line options

- Any parameter can be modified on the fly from the commanad-
ine for easy testing. e.q.
--override simulations:geometry=calib bc.geo



https://github.com/zoglauer/megalib/blob/master/doc/Cosima.pdf
http://megalibtoolkit.com/

Final remarks

* (Generation of full detector response files is pretty much done
e Source localization code is the next step

e Automatic science pipelines still need to be developed

A possible challenge: atmospheric scattering

- The atmospheric simulation itself
will not be part of bc-tools

- We are hoping GBM'’s simulations
are good enough for BurstCulbe.

 T[he project is public and we welcome contributions through merge
requests:
aitlab.com/burstcube/bc-tools



http://gitlab.com/burstcube/bc-tools

